×

Boundedness of Bergman projectors on homogeneous Siegel domains. (English) Zbl 1520.32002

Summary: In this paper we study the boundedness of Bergman projectors on weighted Bergman spaces on homogeneous Siegel domains of Type II. As it appeared to be a natural approach in the special case of tube domains over irreducible symmetric cones, we study such boundedness on the scale of mixed-norm weighted Lebesgue spaces. The sharp range for the boundedness of such operators is essentially known only in the case of tube domains over Lorentz cones. In this paper we prove that the boundedness of such Bergman projectors is equivalent to variuos notions of atomic decomposition, duality, and characterization of boundary values of the mixed-norm weighted Bergman spaces, extending results mostly known only in the case of tube domains over irreducible symmetric cones. Some of our results are new even in the latter simpler context. We also study the simpler, but still quite interesting, case of the “positive” Bergman projectors, the integral operator in which the Bergman kernel is replaced by its modulus. We provide a useful characterization which was previously known for tube domains.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A36 Bergman spaces of functions in several complex variables
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)

References:

[1] Békollé, D.; Bonami, A., Estimates for the Bergman and Szegö projections in two symmetric domains of \({\mathbb{C} }^n\), Colloq. Math., 68, 81-100 (1995) · Zbl 0863.47018 · doi:10.4064/cm-68-1-81-100
[2] Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M.M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl.5 (2004), front matter + ii + 75 pp · Zbl 1286.32001
[3] Békollé, D.; Bonami, A.; Garrigós, G.; Ricci, F., Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains, Proc. Lond. Math. Soc., 89, 317-360 (2004) · Zbl 1079.42015 · doi:10.1112/S0024611504014765
[4] Békollé, D.; Bonami, A.; Garrigós, G.; Ricci, F.; Sehba, B., Analytic Besov spaces and hardy-type inequalities in tube domains over symmetric cones, J. Reine Angew. Math., 647, 25-56 (2010) · Zbl 1243.42035
[5] Békollé, D.; Bonami, A.; Peloso, MM; Ricci, F., Boundedness of weighted Bergman projections on tube domains over light cones, Math. Zeis., 237, 31-59 (2001) · Zbl 0983.32001 · doi:10.1007/PL00004861
[6] Békollé, D.; Gonessa, J.; Nana, C., Complex interpolation between two weighted Bergman spaces on tubes over symmetric cones, C. R. Acad. Sci. Paris Ser. I, 337, 13-18 (2003) · Zbl 1033.32004 · doi:10.1016/S1631-073X(03)00257-7
[7] Békollé, D.; Gonessa, J.; Nana, C., Bergman-Lorentz spaces on tube domains over symmetric cones, N. Y. J. Math., 24, 902-928 (2018) · Zbl 1401.32006
[8] Békollé, D.; Gonessa, J.; Nana, C., Lebesgue mixed norm estimates for bergman projectors: from tube domains over homogeneous cones to homogeneous siegel domains of type II, Math. Ann., 374, 395-427 (2019) · Zbl 1435.32005 · doi:10.1007/s00208-018-1731-7
[9] Békollé, D.; Ishi, H.; Nana, C., Korányi’s lemma for homogeneous Siegel domains of type II. Applications and extended results, Bull. Aust. Math. Soc., 90, 77-89 (2014) · Zbl 1295.32037 · doi:10.1017/S0004972714000033
[10] Boggess, A., CR Manifolds and the Tangential Cauchy-Riemann Complex (1991), Boca Raton: CRC Press, Boca Raton · Zbl 0760.32001
[11] Bonami, A.: Three related problems of Bergman spaces of tube domains over symmetric cones. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni13, 183-197 (2002) · Zbl 1225.32012
[12] Bourbaki, N.: General Topology, I, Chap. 1-4, Springer, Berlin (1987)
[13] Bourbaki, N., Topological Vector Spaces (2003), Berlin: Springer, Berlin · doi:10.1007/978-3-642-61715-7_4
[14] Bourbaki, N.: Integration, I, Chap. 1-6, Springer, Berlin (2004)
[15] Bourgain, J.; Demeter, C., The Proof of the \(\ell^2\)-decoupling conjecture, Ann. Math., 182, 351-389 (2015) · Zbl 1322.42014 · doi:10.4007/annals.2015.182.1.9
[16] Calzi, M.: Besov Spaces of Analytic Type: Interpolation, Convolution, Fourier Multipliers, Inclusions, preprint (2021), arXiv:2109.09402
[17] Calzi, M.: Paley-Wiener-Schwartz Theorems on Quadratic CR Manifolds, preprint (2021), arXiv:2112.07991
[18] Calzi, M.; Peloso, MM, Holomorphic function spaces on homogeneous Siegel domains, Diss. Math., 563, 1-168 (2021) · Zbl 1485.32003
[19] Calzi, M., Peloso, M.M.: Toeplitz and Cesàro-type operators on homogeneous Siegel domains, Complex Var. Elliptic Equ. pp. 1-33 (2021)
[20] Calzi, M., Peloso, M.M.: Carleson and reverse Carleson measures on homogeneous Siegel domains. Comp. Anal. Oper. Theory 16(1), 4 (2022) · Zbl 1484.32009
[21] Calzi, M., Peloso, M.M.: Bernstein Spaces on Siegel CR Manifolds, to appear on Anal. Math. Phys., arXiv:2112.07994v3 · Zbl 1504.32005
[22] Faraut, J.; Korányi, A., Analysis on Symmetric Cones (1994), Oxford: Clarendon Press, Oxford · Zbl 0841.43002
[23] Folland, GB, Harmonic Analysis in Phase Space (1989), Princeton: Princeton University Press, Princeton · Zbl 0682.43001 · doi:10.1515/9781400882427
[24] Garrigós, G., Generalized hardy spaces on tube domains over cones, Colloq. Math., 90, 213-251 (2001) · Zbl 0999.42014 · doi:10.4064/cm90-2-4
[25] Garrigós, G.; Nana, C., Hilbert-type inequalities in homogeneous cones, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 31, 815-838 (2020) · Zbl 1486.47052 · doi:10.4171/RLM/916
[26] Ishi, H., Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory, 11, 155-171 (2001) · Zbl 0976.43005
[27] Nana, C., \(L^{p, q}\)-Boundedness of Bergman projections in homogeneous Siegel domains of type II, J. Fourier Anal. Appl., 19, 997-1019 (2013) · Zbl 1306.32002 · doi:10.1007/s00041-013-9280-7
[28] Ricci, F., Taibleson, M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Super. Pisa Cl. Sci. 10, 1-54 (1983) · Zbl 0527.30040
[29] Sehba, BF, Bergman-type operators in tubular domains over symmetric cones, Proc. Edinb. Math. Soc., 52, 529-544 (2009) · Zbl 1168.42011 · doi:10.1017/S0013091506001593
[30] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1978), Amsterdam: North-Holland Publishing Company, Amsterdam · Zbl 0387.46033
[31] Vinberg, EB, The Morozov-Borel theorem for real lie groups, Dokl. Akad. Nauk SSSR, 141, 270-273 (1961) · Zbl 0112.02505
[32] Vinberg, EB, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12, 340-403 (1965) · Zbl 0138.43301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.