×

Holomorphic function spaces on homogeneous Siegel domains. (English) Zbl 1485.32003

The authors study holomorphic functions on homogeneous Siegel domains. They concentrate mainly on weighted mixed norm Bergman spaces. The problems considered include: sampling, atomic decomposition, duality, boundary values, and boundedness of the Bergman projectors. The work consists of an introduction and five chapters, it also contains an appendix devoted to mixed norm spaces. We shall briefly describe the contents of the consecutive chapters.
In the introduction, the authors motivate their study by discussing the simplest example of a Siegel domain: the upper half-plane \(\mathbb{C}_{+}:=\mathbb{R}+i\mathbb{R}_{+}^{*}\). They also present known results concerning function theory on Siegel domains.
Let \(E\) be a vector space over \(\mathbb{C}\) of finite dimension \(n\) and \(F\) be a vector space over \(\mathbb{R}\) of finite dimension \(m>0\). Let \(\Omega\) be an open convex cone with vertex \(0\) in \(F\) and not containing any affine lines. Also, let \(\Phi\colon E\times E\rightarrow F_{\mathbb{C}}\), \(F_{\mathbb{C}}\) is the complexification of \(F\), i.e., \(F_{\mathbb{C}}=F\otimes_{\mathbb{R}}\mathbb{C}\), be a positive non-degenerate hermitian mapping, that is:
(i)
\(\Phi\) is linear in the first argument;
(ii)
\(\Phi(\zeta,\zeta^{'})=\overline{\Phi(\zeta^{'},\zeta)}\) for all \(\zeta,\zeta^{'}\in E\);
(iii)
\(\Phi\) is non-degenerate;
(iv)
\(\Phi(\zeta):=\Phi(\zeta,\zeta)\in \overline{\Omega}\).
{\em The Siegel domain of type II} associated with the cone \(\Omega\) and the mapping \(\Phi\) is defined the following way: \[ D:=\{(\zeta,z)\in E\times F_{\mathbb{C}}\colon \operatorname{Im} z-\Phi(\zeta)\in \Omega\}. \] Chapter one contains, beside the above definition and basic examples, definitions of the Fourier transform, the Bergman and the Hardy spaces, the formulation of the corresponding Paley-Wiener theorems and a discussion of the Kohn Laplacian.
In Chapter two the authors introduce various objects related to homogeneous Siegel domains of type II. This includes a discussion of \(T\)-algebras and the associated homogeneous cones, the generalized power functions \(\Delta_{\Omega}^{s}\), \(\Delta_{\Omega^{'}}^{s}\), \(\Omega^{'}\) the dual cone and the associated gamma and beta functions. They also introduce the corresponding Bergman metric.
Chapter three is devoted to the study of the weighted Bergman spaces \(A_{s}^{p,q}(D)\). These spaces are defined for \(\mathbf{s}\in\mathbb{R}^{r}\) and \(p,q\in (0,\infty]\) as \begin{align*} A_{\mathbf{s}}^{p,q}(D)&:=\mathrm{Hol}(D)\cap L_{\mathbf{s}}^{p,q}(D)\\ A_{\mathbf{s},0}^{p,q}(D)&:=\mathrm{Hol}(D)\cap L_{\mathbf{s},0}^{p,q}(D), \end{align*} where \(L_{\mathbf{s}}^{p,q}(D)\) is the Hausdorff space associated with the space \[ \{f\colon D\rightarrow \mathbb{C}\colon f \text{\:measurable\:} \int_{\Omega}(\Delta_{\Omega}^{\mathbf{s}}\|f_{h}\|_{L^{p}(\mathcal{N}})^{q}d\nu_{\Omega}(h)<\infty\} \] and \(L_{\mathbf{s},0}^{p,q}(D)\) is the closure of \(C_{c}(D)\) in \(L_{\mathbf{s}}^{p,q}(D)\). The measure \(\nu_{\Omega}\) is \(\Delta_{\Omega}^{\mathbf{d}}\cdot \mathcal{H}^{m}\) for an appropriate \(\mathbf{d}\) and \(\mathcal{H}^{m}\) the Hausdorff measure. The symbol \(\mathcal{N}\) stands for \(E\times F\) endowed with the group structure \[ (\zeta,x)(\zeta^{'},x^{'}):=(\zeta+\zeta^{'},x+x^{'}+2\operatorname{Im} \Phi(\zeta,\zeta^{'}) \] and \[ f_{h}\colon \mathcal{N}\ni (\zeta,x)\mapsto f(\zeta,x+i\Phi(\zeta)+ih)\in \mathbb{C}. \] The values \(p,q,\mathbf{s}\) for which \(A_{\mathbf{s}}^{p,q}(D)\) is non-trivial are characterized (Proposition 3.5). Some sampling results are obtained (Theorems 3.22 and 3.23). In Section 3.4 the authors deal with atomic decomposition for the spaces \(A_{\mathbf{s}}^{p,q}(D)\). In Section 3.5 there is studied duality of these spaces.
In Chapter 4 the authors introduce and study Besov-type spaces \(B_{p,q}^{\mathbf{s}}(\mathcal{N},\Omega)\). The theory parallels the classical one defined on \(\mathbb{R}^{n}\). It is modelled in relation to the boundary values of the spaces \(A_{\mathbf{s}}^{p,q}(D)\). It should be noted that the group \(\mathcal{N}\) is not commutative and the authors deal with the full range of exponents \(p,q\in (0,\infty]\).
The main results of Chapter 5 concern the boundedness of the Bergman projectors. Theorem 5.25 gives some conditions on \(p,q\in [1,\infty]\) and \(\mathbf{s}, \mathbf{s}^{'}\in \mathbb{R}^{r}\) such that the corresponding projector \(P_{\mathbf{s}^{'}}\) (defined in Definition 5.19) is a continuous linear mapping of \(L_{\mathbf{s},0}^{p,q}(D)\) into \(\tilde{A}_{\mathbf{s}}^{p,q}(D)\) (this space is defined as the image of some extension operator on appropriate Besov spaces – see Definition 5.3). The study of the Bergman projectors is related to atomic decompositions. The chapter opens with a discussion of boundary values \(f_{h}\) as \(h\rightarrow 0\), \(h\in \Omega\) for functions \(f\in A_{\mathbf{s}}^{p,q}(D)\).

MSC:

32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
42B35 Function spaces arising in harmonic analysis
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)

References:

[1] J. Arazy,A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, in: Contemp. Math. 185, Amer. Math. Soc., 1995, 7-65. · Zbl 0831.46014
[2] J. Arazy and S. D. Fisher,Invariant Hilbert spaces of analytic functions on bounded symmetric domains, in: Operator Theory Adv. Appl. 48, Birkhäuser, Basel, 1990, 67-91. · Zbl 0733.46011
[3] J. Arazy and H. Upmeier,Invariant inner product in spaces of holomorphic functions on bounded symmetric domains, Doc. Math. 2 (1997), 213-261. · Zbl 0977.46010
[4] N. Arcozzi, N. Chalmoukis, A. Monguzzi, M. M. Peloso and M. Salvatori,The Drury- Arveson space on the Siegel upper half-space and a von Neumann type inequality, arXiv:2103. 05067 (2021).
[5] N. Arcozzi, A. Monguzzi, M. M. Peloso and M. Salvatori,Paley-Wiener theorems on the Siegel upper half-space, J. Fourier Anal. Appl. 25 (2019), 1958-1986. · Zbl 1422.32008
[6] F. Astengo, M. Cowling, B. Di Blasio and M. Sundari,Hardy’s uncertainty principle on certain Lie groups, J. London Math. Soc. 62 (2000), 461-472. · Zbl 1026.43002
[7] D. Békollé,Bergman spaces with small exponents, Indiana Univ. Math. J. 49 (2000), 973- 993. · Zbl 0979.32007
[8] D. Békollé,The dual of the Bergman spaceA1in symmetric Siegel domains of type II, Trans. Amer. Math. Soc. 296 (1986), 607-619. · Zbl 0626.32033
[9] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu,BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. · Zbl 0765.32005
[10] D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso and F. Ricci,Lecture Notes on Bergman Projectors in Tube Domains over Cones: an Analytic and Geometric Viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), 75 pp. · Zbl 1286.32001
[11] D. Békollé, A. Bonami, G. Garrigós and F. Ricci,Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains, Proc. London Math. Soc. (3) 89 (2004), 317-360. · Zbl 1079.42015
[12] D. Békollé, A. Bonami, G. Garrigós, F. Ricci and B. Sehba,Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones, J. Reine Angew. Math. 647 (2010), 25-56. · Zbl 1243.42035
[13] D. Békollé, J. Gonessa and C. Nana,Atomic decomposition and interpolation via the complex method for mixed norm Bergman spaces on tube domains over symmetric cones, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 801-826. · Zbl 1477.32010
[14] D. Békollé, J. Gonessa and C. Nana,Bergman-Lorentz spaces on tube domains over symmetric cones, New York J. Math. 24 (2018), 902-928. · Zbl 1401.32006
[15] D. Békollé, J. Gonessa and C. Nana,Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous Siegel domains of type II, Math. Ann. 374 (2019), 395-427. · Zbl 1435.32005
[16] D. Békollé, H. Ishi and C. Nana,Korányi’s lemma for homogeneous Siegel domains of type II. Applications and extended results, Bull. Austral. Math. Soc. 90 (2014), 77-89. · Zbl 1295.32037
[18] D. Békollé and A. Temgoua Kagou,Reproducing properties andLp-estimates for Bergman projections in Siegel domains of type II, Studia Math. 115 (1995), 219-239. · Zbl 0842.32016
[19] D. Békollé and A. Temgoua Kagou,Molecular decompositions and interpolation, Integral Equations Operator Theory 31 (1998), 150-177. · Zbl 0911.32001
[20] A. Benedek and R. Panzone,The spacesLp, with mixed norm, Duke Math. J. 28 (1961), 301-324. · Zbl 0107.08902
[21] J. Bergh and J. Löfström,Interpolation Spaces. An Introduction, Springer, 1976. · Zbl 0344.46071
[22] A. Bonami,Three related problems of Bergman spaces of tube domains over symmetric cones, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), 183-197. · Zbl 1225.32012
[23] A. Bonami, D. Buraczewski, E. Damek, A. Hulanicki, R. Penney and B. Trojan,Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II, J. Funct. Anal. 188 (2002), 38-74. · Zbl 0999.31005
[24] N. Bourbaki,Algèbre, Chap. 1-3, Springer, 2007. · Zbl 0205.06001
[25] N. Bourbaki,Algèbre, Chap. 9, Springer, 2007.
[26] N. Bourbaki,Topologie générale, Chap. 5-10, Springer, 2006.
[27] N. Bourbaki,Topological Vector Spaces, Springer, 2003. · Zbl 1115.46002
[28] N. Bourbaki,Integration I, Springer, 2004. · Zbl 1095.28001
[29] N. Bourbaki,Groupes et algèbres de Lie, Chap. 2-3, Springer, 2006. · Zbl 1181.17001
[30] M. Calzi and M. M. Peloso,Carleson and reverse Carleson measures on homogeneous Siegel domains, arXiv:2105.06342.
[31] M. Calzi and M. M. Peloso,Toeplitz and Cesàro operators on homogeneous Siegel domains, arXiv:2105.06348.
[32] É. Cartan,Sur les domaines bornés homogènes de l’espace denvariables complexes, Abh. Math. Semin. Univ. Hamburg 11 (1935), 116-162. · Zbl 0011.12302
[33] J. G. Christensen,Atomic decompositions of Besov spaces related to symmetric cones, in: Contemp. Math. 598, Amer. Math. Soc., 2013, 97-110. · Zbl 1410.43002
[34] J. G. Christensen,Atomic decompositions of mixed norm Bergman spaces on tube type domains, in: Contemp. Math. 714, Amer. Math. Soc., 2018, 77-85. · Zbl 1402.32008
[35] P. Ciatti and F. Ricci,Boundedness of Bergman projectors on Siegel domains over polyhedral cones, Math. Ann. 329 (2004), 225-246. · Zbl 1056.32002
[36] R. R. Coifman and R. Rochberg,Representation theorems for holomorphic and harmonic functions inLp, Astérisque 77 (1980), 11-66. · Zbl 0472.46040
[37] E. Damek, A. Hulanicki, D. Müller and M. M. Peloso,PluriharmonicH2functions on symmetric irreducible Siegel domains, Geom. Funct. Anal. 10 (2000), 1090-1117. · Zbl 0969.31007
[38] M. M. Day,The spacesLpwith0< p <1, Bull. Amer. Math. Soc. 46 (1940), 816-823. · JFM 66.0538.01
[39] D. Debertol,Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains, Publ. Mat. 49 (2005), 21-72. · Zbl 1097.32002
[40] P. L. Duren,Theory ofHpSpaces, Academic Press, 1970. · Zbl 0215.20203
[41] J. Faraut and A. Korányi,Analysis on Symmetric Cones, Clarendon Press, 1994. · Zbl 0841.43002
[42] M. Feldman,Mean oscillation, weighted Bergman spaces, and Besov spaces on the Heisenberg group and atomic decompositions, J. Math. Anal. Appl. 158 (1991), 376-395. · Zbl 0733.32005
[43] G. B. Folland,Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. · Zbl 0682.43001
[44] G. Garrigós,Generalized Hardy spaces on tube domains over cones, Colloq. Math. 90 (2001), 213-251. · Zbl 0999.42014
[45] G. Garrigós,Möbius invariance of analytic Besov spaces in tube domains over symmetric cones, Colloq. Math. 118 (2010), 559-568. · Zbl 1196.32016
[46] D. Geller,Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal. 36 (1980), 205-254. · Zbl 0433.43008
[47] S. G. Gindikin,Analysis in homogeneous domains, Russ. Math. Surv. 19 (1964), 1-89.
[48] S. G. Gindikin,Invariant generalized functions in homogeneous domains, Funct. Anal. Appl. 9 (1975), 50-52. · Zbl 0332.32022
[49] L. Grafakos,Classical Fourier Analysis, Springer, 2008. · Zbl 1220.42001
[50] L. Hörmander,The analysis of Linear Partial Differential Operators I, Springer, 1983. · Zbl 0521.35001
[51] H. Ishi,Positive Riesz distributions on homogeneous cones, J. Math. Soc. Japan 52 (2000), 161-186. · Zbl 0954.43003
[52] H. Ishi,Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory 11 (2001), 155-171. · Zbl 0976.43005
[53] A. Korányi,The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. Math. 82 (1965), 332-350. · Zbl 0138.06601
[54] A. Korányi and E. M. Stein,H2spaces of generalized half-spaces, Studia Math. 44 (1972), 379-388. · Zbl 0224.32004
[55] S. G. Krantz,Function Theory of Several Complex Variables, Amer. Math. Soc. Chelsea Publ., 2001. · Zbl 1087.32001
[56] S. Lang,Fundamentals of Differential Geometry, Springer, 1999. · Zbl 0932.53001
[57] D. H. Luecking,Closed ranged restriction operators on weighted Bergman spaces, Pac. J. Math. 110 (1984), 145-160. · Zbl 0477.32026
[58] D. H. Luecking,Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85-111. · Zbl 0584.46042
[59] D. H. Luecking,Dominating measures for spaces of analytic functions, Illinois J. Math. 32 (1988), 23-39. · Zbl 0633.30049
[60] D. H. Luecking,Sampling measures for Bergman spaces on the unit disk, Math. Ann. 316 (2000), 659-679. · Zbl 0971.46014
[61] A. Monguzzi, M. M. Peloso and M. Salvatori,Sampling in spaces of entire functions of exponential type inCn+1, arXiv:2105.08458 (2021).
[62] S. Murakami,On Automorphisms of Siegel Domains, Springer, 1972. · Zbl 0245.32001
[63] K. Nakajima,Some studies on Siegel domains, J. Math. Soc. Japan 27 (1975), 54-75. · Zbl 0293.32030
[64] C. Nana,Lp,q-boundedness of Bergman projections in homogeneous Siegel domains of type II, J. Fourier Anal. Appl. 19 (2013), 997-1019. · Zbl 1306.32002
[65] C. Nana and B. Trojan,Lp-boundedness of Bergman projections in tube domains over homogeneous cones, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (2011), 477-511. · Zbl 1232.32001
[66] R. D. Ogden and S. Vági,Harmonic analysis of a nilpotent group and function theory on Siegel domains of type II, Adv. Math. 33 (1979), 31-92. · Zbl 0463.43002
[67] M. M. Peloso and F. Ricci,analysis of the Kohn Laplacian on quadratic CR manifolds, J. Funct. Anal. 203 (2003), 321-355. · Zbl 1043.32021
[68] M. M. Peloso and F. Ricci,Tangential Cauchy-Riemann equations on quadratic CR manifolds, Rend. Lincei Mat. Appl. 13 (2002), 285-294. · Zbl 1225.32037
[69] M. M. Peloso and M. Salvatori,Functions of exponential growth in a half-plane, sets of uniqueness, and the Müntz-Szász problem for the Bergman space, J. Geom. Anal. 27 (2017), 2570-2599. · Zbl 1380.30038
[70] M. M. Peloso and M. Salvatori,On some spaces of holomorphic functions of exponential growth on a half-plane, Concr. Oper. 3 (2016), 52-67. · Zbl 1348.30036
[71] I. I. Pjatecki˘ı-Šapiro,Geometry of homogeneous domains and the theory of automorphic functions. The solution of a problem of É. Cartan, Uspekhi Mat. Nauk 14 (1959), 190-192 (in Russian).
[72] F. Ricci,Harmonic analysis on the Heisenberg group, unpublished notes, Cortona, 1992, ii+67 pp.
[73] F. Ricci and M. Taibleson,Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 1-54. · Zbl 0527.30040
[74] R. Rochberg,Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236. · Zbl 0496.32010
[75] S. Rolewicz,Metric Linear Spaces, 2nd ed., PWN, Warszawa, 1985. · Zbl 0573.46001
[76] W. Rudin,Real and Complex Analysis, McGraw-Hill, 1987. · Zbl 0925.00005
[77] V. S. Rychkov,Littlewood-Paley theory and function spaces withAlocpweights, Math. Nachr. 224 (2001), 145-180. · Zbl 0984.42011
[78] A. Sard,Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158-174. · Zbl 0137.42501
[79] L. Schwartz,Théorie des distributions, Hermann, 1978. · Zbl 0399.46028
[80] K. Seip,Interpolation and Sampling in Spaces of Analytic Functions, Univ. Lecture Ser. 33, Amer. Math. Soc., 2004. · Zbl 1057.30036
[81] K. Seip,Interpolation and sampling in small Bergman spaces, Collect. Math. 64 (2013), 61-72. · Zbl 1266.30020
[82] E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. · Zbl 0207.13501
[83] E. M. Stein,Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. · Zbl 0821.42001
[84] M. E. Taylor,Noncommutative Harmonic Analysis, Amer. Math. Soc., 1986. · Zbl 0604.43001
[85] A. Temgoua Kagou,The duals of Bergman spaces in Siegel domains of type II, IMHOTEP J. Afr. Math. Pures Appl. 1 (1997), 41-87. · Zbl 0920.32002
[86] R. M. Timoney,Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267. · Zbl 0416.32010
[87] F. Trèves,Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, 1966. · Zbl 0164.40602
[88] H. Triebel,Theory of Funtion Spaces, Birkhäuser, 1983. · Zbl 0546.46027
[89] M. Vergne and H. Rossi,Analytic continuation of the holomorphic Fourier series of a semisimple Lie group, Acta Math. 136 (1976), 1-59. · Zbl 0356.32020
[90] E. B. Vinberg,The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1965), 340-403. · Zbl 0138.43301
[91] E. B. Vinberg, S. G. Gindikin and I. I. Pjatecki˘ı-Šapiro,Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obšč. 12 (1963), 359-388 (in Russian). · Zbl 0137.05603
[92] Y. Xu,Theory of Complex Homogeneous Bounded Domains, Science Press, 2000.
[93] J. Yeh,Real Analysis: Theory of Measure and Integration, World Sci., 2006. · Zbl 1098.28002
[94] K. Zhu,Holomorphic Besov spaces on bounded symmetric domains, Quart. J. Math. Oxford 46 (1995), 239-256. · Zbl 0837.32013
[95] K. Zhu,Holomorphic Besov spaces on bounded symmetric domains II, Indiana Univ. Math. J. 44 (1995), 1017-1031. · Zbl 0853.46049
[96] K. Zhu,Analysis on Fock Spaces, Springer, 2012. Index of notation · Zbl 1262.30003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.