×

Exploration and control of bifurcation in a fractional-order delayed glycolytic oscillator model. (English) Zbl 1519.92367

Summary: Recently, establishing proper dynamical models to describe the relationship among different chemical substances has become a vital theme in chemistry. In this present article, we set up a new fractional-order delayed glycolytic oscillator model. Utilizing the contraction mapping theorem, we explore the existence and uniqueness of the solution to the involved fractional glycolytic oscillator model with delay. By virtue of some suitable analytical skills, we discuss the non-negativeness of the solution to the established fractional glycolytic oscillator system. Taking advantage of a suitable function, we investigate the boundedness of the fractional glycolytic oscillator system. Exploiting the stability and bifurcation theory of fractional dynamical system, we study the stability and the generation of Hopf bifurcation of the fractional glycolytic oscillator system with delay. Making use of delayed feedback controller and \(PD^\alpha\) controller, we deal with the Hopf bifurcation control of the fractional glycolytic oscillator system owing delay. Computer simulation results are displayed to support the obtained assertions. The acquired results of this article own great theoretical value in dominating the concentrations of different chemical compositions.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] A. Q. Khan, Neimark-Sacker bifurcation of a two-dimensional discrete-time chemical model, Math. Prob. Eng. 2020 #3936242. · Zbl 1459.37037
[2] Z. U. A. Zafar, K. Rehan, M. Mushtaq, M. Rafiq, Numerical modeling for non-linear biochemical reaction networks, Iran. J. Math. Chem. 8 (2017) 413-423. · Zbl 1406.92262
[3] Q. Din, K. Haider, Discretization, bifurcation analysis and chaos con-trol for Schnakenberg model, J. Math. Chem. 58 (2020) 1615-1649. · Zbl 1447.39008
[4] D. Kim, M. S. Lee, S. B. Yun, On the positivity of an auxiliary func-tion of the BGK model for slow chemical reactions, Appl. Math. Lett. 113 (2021) #106841. · Zbl 1457.80012
[5] J. J. Wang, Y. F. Jia, Analysis on bifurcation and stability of a generalized Gray-Scott chemical reaction model, Phys. A 528 (2019) #121394. · Zbl 07568478
[6] L. Wang, D. Q. Jiang, G. S. K. Wolkowicz, Global asymptotic behav-ior of a multi-species stochastic chemostat model with discrete delays, J. Dyn. Diff. Eq. 32 (2020) 849-872. · Zbl 1439.92208
[7] G. H. Guo, B. F. Li, X. L. Lin, Hopf bifurcation in spatially homoge-neous and inhomogeneous autocatalysis models, Comput. Math. Appl. 67 (2014) 151-163. · Zbl 1353.35292
[8] Y. F. Jia, Y. Li, J. H. Wu Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics, Discr. Contin. Dyn. Syst. Ser. A 37 (2017) 4785-4813. · Zbl 1371.35084
[9] C. J. Xu, C. Aouiti, Z. X. Liu, P. L. Li, L. Y. Yao, Bifurcation caused by delay in a fractional-order coupled Oregonator model in chemistry, MATCH Commun. Math. Comput. Chem. 88 (2022) 371-396. · Zbl 1505.92319
[10] Q. Din, Dynamics and Hopf bifurcation of a chaotic chemical reaction model, MATCH Commun. Math. Comput. Chem. 88 (2022) 351-369. · Zbl 1505.92308
[11] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, P. L. Li, Bifurcation dy-namics in a fractional-order Oregonator model including time delay, MATCH Commun. Math. Comput. Chem. 87 (2022) 397-414. · Zbl 1505.92321
[12] X. X. Qie, Q. B. Ji, Computational analysis and bifurcation of regular and chaotic Ca 2+ oscillations, Math. 9 (2021) #3324.
[13] Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction, MATCH Commun. Math. Comput. Chem. 79 (2018) 577-606. · Zbl 1472.92352
[14] R. H. Garrett, C. M. Grisham, Biochemistry, Saunder’s College Pub., Philadelphia, 1999.
[15] J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, Macmillan, New York, 2002.
[16] T. Dandekar, S. Schuster, B. Snel, M. Huynen, P. Bork, Pathway alignment: application to the comparative analysis of glycolytic en-zymes, Biochem. J. 343 (1999) 115-124.
[17] A. Boiteux and B. Hess, Design of glycolysis, Phil. Trans. Royal Soc. London B 293 (1981) 5-22.
[18] C. J. Xu, M. X. Liao, Bifurcation analysis of an autonomous epidemic predator-prey model with delay, Ann. Mat. Pura Appl. 193 (2014) 23-38. · Zbl 1288.34076
[19] C. J. Xu, Q. M. Zhang, On the chaos control of the Qi system, J. Eng. Math. 90 (2015) 67-81. · Zbl 1374.34239
[20] C. J. Xu, Y. S. Wu, Bifurcation and control of chaos in a chemical system, Appl. Math. Model. 39 (2015) 2295-2310. · Zbl 1443.92206
[21] C. J. Xu, Z. X. Liu, L. Y. Yao, C. Aouiti, Further exploration on bifur-cation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays, Appl. Math. Comput. 410 (2021) #126458. · Zbl 1510.92026
[22] C. J. Xu, W. Zhang, Z. X. Liu, P. L. Li, L. Y. Yao, Bifurcation study for fractional-order three-layer neural networks involving four time delays, Cogn. Comput. 14 (2022) 714-732.
[23] C. J. Xu, D. Mu, Y. L. Pan, C. Aouiti, Y. C. Pang, L. Y. Yao, Probing into bifurcation for fractional-order BAM neural networks concerning multiple time delays, J. Comput. Sci. 62 (2022) #101701.
[24] C. J. Xu, Z. X. Liu, M. X. Liao, L. Y. Yao, Theoretical analysis and computer simulations of a fractional order bank data model in-corporating two unequal time delays, Expert Syst. Appl. 199 (2022) #116859.
[25] X. J. Yang, C. D. Li, Q. K. Song, J. Y. Chen, J. J. Huang, Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neu-rons, Neural Netw. 105 (2018) 88-103. · Zbl 1441.93209
[26] B. Ghanbari, S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection de-veloped in predator population, Chaos Solitons Fract. 138 (2020) #109960. · Zbl 1490.92046
[27] C. J. Xu, Z. X. Liu, C. Aouiti, P. L. Li, L. Y. Yao, J. L. Yan, New ex-ploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays, Cogn. Neurodyn. 16 (2022) 1233-1248.
[28] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, L. Y. Yao, Further analysis on dynamical properties of fractional-order bi-directional associative memory neural networks involving double delays, Math. Meth. Appl. Sci. 45 (2022) 11736-11754. · Zbl 1534.92010
[29] F. B. Yousef, A. Yousef, C. Maji, Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality, Chaos Solitons Fract. 145 (2021) #110711. · Zbl 1498.92182
[30] B. Ghanbari, S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection de-veloped in predator population, Chaos Solitons Fract. 138 (2020) #109960. · Zbl 1490.92046
[31] M. Shafiya, G. Nagamani, New finite-time passivity criteria for de-layed fractional-order neural networks based on Lyapunov function approach, Chaos Solitons Fract. 158 (2022) #112005. · Zbl 1505.92013
[32] H. L. Tan, J. W. Wu, H. B. Bao, Event-triggered impulsive syn-chronization of fractional-order coupled neural networks, Appl. Math. Comput. 429 (2022) #127244. · Zbl 1510.34106
[33] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Z. X. Liu, Bifurcation proper-ties for fractional order delayed BAM neural networks, Cogn.Comput. 13 (2021) 322-356.
[34] S. S. Xiao, Z. S. Wang, C. L. Wang, Passivity analysis of fractional-order neural networks with interval parameter uncertainties via an interval matrix polytope approach, Neurocomputing 477 (2022) 96-103.
[35] X. B. Nie, P. P. Liu, J. L. Liang, J. D. Cao, Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function, Neural Netw. 142 (2021) 690-700. · Zbl 1526.93197
[36] K. Udhayakumar, F. A. Rihan, R. Rakkiyappan, J. D. Cao, Fractional-order discontinuous systems with indefinite LKFs: An ap-plication to fractional-order neural networks with time delays, Neural Netw. 145 (2022) 319-330. · Zbl 1526.93233
[37] F. H. Zhang, T. W. Huang, Q. J. Wu, Z. G. Zeng, Multistability of delayed fractional-order competitive neural networks, Neural Netw. 140 (2021) 325-335. · Zbl 1526.93253
[38] N. Padmaja, P. Balasubramaniam, New delay and order-dependent passivity criteria for impulsive fractional-order neural networks with switching parameters and proportional delays, Neurocomputing 454 (2021) 113-123.
[39] C. J. Xu, M. X. Liao, P. L. Li, L. Y. Yao, Q. W. Qin, Y. L. Shang, Chaos control for a fractional-order Jerk system via time delay feed-back controller and mixed controller, Fract. Fractional 5 (2021) #257.
[40] P. L. Li, J. L. Yan, C. J. Xu, Y. L. Shang, Dynamic analysis and bifurcation study on fractional-order tri-neuron neural networks in-corporating delays, Fract. Fractional 6 (2022) #161.
[41] C. J. Xu, D. Mu, C. Aouiti, Z. X. Liu, Q. W. Qin, L. Y. Yao, M. Hou, Bifurcation anti-control technique in a fractional-order stable finance model, Asian J. Control (2022) doi: https://doi.org/10. 1002/asjc.2865 · Zbl 07889057 · doi:10.1002/asjc.2865
[42] F. A. Rihan, C. Rajivganthi, Dynamics of fractional-order delay dif-ferential model of prey-predator system with Holling-type III and in-fection among predators, Chaos Solitons Fract. 141 (2020) #110365. · Zbl 1496.92095
[43] C. D. Huang, J. D. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput. 292 (2017) 210-227. · Zbl 1410.37074
[44] C. D. Huang, J. Wang, X. P. Chen, J. D. Cao, Bifurcations in a fractional-order BAM neural network with four different delays, Neu-ral Netw. 141 (2021) 344-354. · Zbl 1525.34114
[45] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. · Zbl 0924.34008
[46] C. D. Huang, J. D. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput. 292 (2017) 210-227. · Zbl 1410.37074
[47] Z. Odibat, N. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007) 286-293. · Zbl 1122.26006
[48] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Engin. Sys. Appl. 2 (1996) 963-968.
[49] W. H. Deng, C. P. Li, J. H. Lü, Stability analysis of linear frac-tional differential system with multiple time delays, Nonlinear Dyn. 48 (2007) 409-416. · Zbl 1185.34115
[50] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. D. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput. 54 (2017) 435-449. · Zbl 1377.34062
[51] Q. S. Sun, M. Xiao, B. B. Tao, Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays, Neural Proc. Lett. 47 (2018) 1285-1296.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.