×

Event-triggered impulsive synchronization of fractional-order coupled neural networks. (English) Zbl 1510.34106

Summary: The impulsive synchronization of fractional-order coupled neural networks (FOCNNs) via an event-triggered law is investigated in this paper. For the objective of conserving computing resources and decreasing network load, an event-triggered impulsive control (ETIC) mechanism depending on state errors is introduced. The event-triggered controller updates only at impulsive instants, which are defined by some certain triggering conditions and not predetermined. Then, by means of fractional Lyapunov theory, the Kronecker product together with the comparison principle and Laplace transform, sufficient conditions depending on fractional order are obtained to achieve event-triggered impulsive synchronization of FOCNNs. Furthermore, it is also proved that there exists a positive constant less than the time interval between arbitrary two consecutive impulsive instants, which means the Zeno phenomenon is eliminated. At last, a numerical simulation of the typical chaotic system is presented to indicate the feasibility of the developed ETIC mechanism and the correctness of the obtained results.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Carroll, T.; Pecora, L., Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 38, 4, 453-456 (1991)
[2] Lakshmanan, S.; Prakash, M.; Lim, C. P.; Rakkiyappan, R.; Balasubramaniam, P.; Nahavandi, S., Synchronization of an inertial neural network with time-varying delays and its application to secure communication, IEEE Trans. Neural Netw. Learn. Syst., 29, 1, 195-207 (2018)
[3] Kumar, M.; Mukherjee, P.; Verma, K.; Verma, S.; Rawat, D. B., Improved deep convolutional neural network based malicious node detection and energy-efficient data transmission in wireless sensor networks, IEEE Trans. Netw. Sci. Eng. (2021)
[4] Zhu, Z.-Y.; Zhao, Z.-S.; Zhang, J.; Wang, R.-K.; Li, Z., Adaptive fuzzy control design for synchronization of chaotic time-delay system, Inf. Sci., 535, 225-241 (2020) · Zbl 1466.93098
[5] Wang, Y.; Zhou, Y.; Zhou, J.; Xia, J.; Wang, Z., Quantized control for extended dissipative synchronization of chaotic neural networks: a discretized LKF method, ISA Trans. (2021)
[6] Liu, F.; Song, Q.; Wen, G.; Cao, J.; Yang, X., Bipartite synchronization in coupled delayed neural networks under pinning control, Neural Netw., 108, 146-154 (2018) · Zbl 1441.93281
[7] Hu, T.; Park, J. H.; Liu, X.; He, Z.; Zhong, S., Sampled-data-based event-triggered synchronization strategy for fractional and impulsive complex networks with switching topologies and time-varying delay, IEEE Trans. Syst., Man, Cybern., 1-13 (2021)
[8] Wang, Y.; Tian, Y.; Li, X., Global exponential synchronization of interval neural networks with mixed delays via delayed impulsive control, Neurocomputing, 420, 290-298 (2021)
[9] Shen, B.; Wang, Z.; Liu, X., Sampled-data synchronization control of dynamical networks with stochastic sampling, IEEE Trans. Autom. Control, 57, 10, 2644-2650 (2012) · Zbl 1369.93047
[10] Yao, L.; Wang, Z.; Huang, X.; Li, Y.; Ma, Q.; Shen, H., Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 1-12 (2021)
[11] Tang, Y.; Wong, W. K., Distributed synchronization of coupled neural networks via randomly occurring control, IEEE Trans. Neural Netw. Learn. Syst., 24, 3, 435-447 (2013)
[12] Lv, S.; He, W.; Qian, F.; Cao, J., Leaderless synchronization of coupled neural networks with the event-triggered mechanism, Neural Netw., 105, 316-327 (2018) · Zbl 1441.93284
[13] Zhu, S.; Wang, L.; Duan, S., Memristive pulse coupled neural network with applications in medical image processing, Neurocomputing, 227, 149-157 (2017)
[14] Yang, T.; Chua, L., Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Syst. I, 44, 10, 976-988 (1997)
[15] Li, D.; peng Zhang, X.; ting Hu, Y.; yuan Yang, Y., Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters, Neurocomputing, 167, 165-171 (2015)
[16] Ao, W.; Ma, T.; Sanchez, R.-V.; Gan, H., Finite-time and fixed-time impulsive synchronization of chaotic systems, J. Frankl. Inst., 357, 16, 11545-11557 (2020) · Zbl 1450.93052
[17] Li, P.; Cao, J.; Wang, Z., Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Phys. A, 373, 261-272 (2007)
[18] Zhang, L.; Li, Y.; Lou, J.; Lu, J., Bipartite asynchronous impulsive tracking consensus for multi-agent systems, Front. Inf. Technol. Electron. Eng. (2022)
[19] Lu, J.; Jiang, B.; Zheng, W. X., Potential impacts of delay on stability of impulsive control systems, IEEE Trans. Autom. Control (2021)
[20] Li, X.; Rakkiyappan, R., Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays, Commun. Nonlinear Sci. Numer. Simul., 18, 6, 1515-1523 (2013) · Zbl 1286.34106
[21] Qi, J.; Li, C.; Huang, T., Stability of inertial BAM neural network with time-varying delay via impulsive control, Neurocomputing, 161, 162-167 (2015)
[22] Wang, A.; Dong, T.; Liao, X., Event-triggered synchronization strategy for complex dynamical networks with the Markovian switching topologies, Neural Netw., 74, 52-57 (2016) · Zbl 1398.34076
[23] Tan, Y.; Fei, S.; Liu, J.; Zhang, D., Asynchronous adaptive event-triggered tracking control for multi-agent systems with stochastic actuator faults, Appl. Math. Comput., 355, 482-496 (2019) · Zbl 1428.93133
[24] Li, X.; Yang, X.; Cao, J., Event-triggered impulsive control for nonlinear delay systems, Automatica, 117, 108981 (2020) · Zbl 1441.93179
[25] Liu, B.; Sun, Z.; Luo, Y.; Zhong, Y., Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control, Phys. A, 531, 121725 (2019) · Zbl 07569427
[26] Li, X.; Peng, D.; Cao, J., Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65, 11, 4908-4913 (2020) · Zbl 1536.93638
[27] Wang, M.; Wu, S.; Li, X., Event-triggered delayed impulsive control for nonlinear systems with applications, J. Frankl. Inst., 358, 8, 4277-4291 (2021) · Zbl 1465.93146
[28] Peng, D.; Li, X., Leader-following synchronization of complex dynamic networks via event-triggered impulsive control, Neurocomputing, 412, 1-10 (2020)
[29] Lv, X.; Cao, J.; Li, X.; Abdel-Aty, M.; Al-Juboori, U. A., Synchronization analysis for complex dynamical networks with coupling delay via event-triggered delayed impulsive control, IEEE Trans. Cybern., 51, 11, 5269-5278 (2021)
[30] Hilfer, R.; Butzer, P.; Westphal, U., An Introduction to Fractional Calculus, Appl. Fract. Calc. Phys., 1-85 (2010), World Scientific · Zbl 0987.26005
[31] Dalir, M.; Bashour, M., Applications of fractional calculus, Appl. Math. Sci., 4, 21, 1021-1032 (2010) · Zbl 1195.26011
[32] Gómez, F.; Bernal, J.; Rosales, J.; Cordova, T., Modeling and simulation of equivalent circuits in description of biological systems - a fractional calculus approach, J. Electr. Bioimpedance, 3, 1, 2-11 (2012)
[33] Liu, P.; Kong, M.; Xu, M.; Sun, J.; Liu, N., Pinning synchronization of coupled fractional-order time-varying delayed neural networks with arbitrary fixed topology, Neurocomputing, 400, 46-52 (2020)
[34] Li, H.-L.; Cao, J.; Hu, C.; Zhang, L.; Wang, Z., Global synchronization between two fractional-order complex networks with non-delayed and delayed coupling via hybrid impulsive control, Neurocomputing, 356, 31-39 (2019)
[35] Yang, S.; Hu, C.; Yu, J.; Jiang, H., Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Trans. Cybern., 50, 7, 3157-3168 (2020)
[36] Zhao, D.; Li, Y.; Li, S.; Cao, Z.; Zhang, C., Distributed event-triggered impulsive tracking control for fractional-order multiagent networks, IEEE Trans. Syst., Man, Cybern., 1-13 (2021)
[37] Yu, N.; Zhu, W., Event-triggered impulsive chaotic synchronization of fractional-order differential systems, Appl. Math. Comput., 388, 125554 (2021) · Zbl 1508.34073
[38] Zhang, L.; Zhong, J.; Lu, J., Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Netw., 144, 11-20 (2021) · Zbl 1526.93236
[39] Wang, Z.; Wang, X.; Xia, J.; Shen, H.; Meng, B., Adaptive sliding mode output tracking control based-FODOB for a class of uncertain fractional-order nonlinear time-delayed systems, Sci. China Technol. Sci., 63, 9, 1854-1862 (2020)
[40] Tan, Y.; Xiong, M.; Zhang, B.; Fei, S., Adaptive event-triggered nonfragile state estimation for fractional-order complex networked systems with cyber attacks, IEEE Trans. Syst., Man, Cybern., 52, 4, 2121-2133 (2022)
[41] Hai, X.; Ren, G.; Yu, Y.; Xu, C.; Zeng, Y., Pinning synchronization of fractional and impulsive complex networks via event-triggered strategy, Commun. Nonlinear Sci. Numer. Simul., 82, 105017 (2020) · Zbl 1457.93058
[42] Podlubny, I., Fractional Differential Equations (1999), Academic Press, Inc.: Academic Press, Inc. San Diego, CA · Zbl 0918.34010
[43] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19, 9, 2951-2957 (2014) · Zbl 1510.34111
[44] Li, L.; Liu, X.; Tang, M.; Zhang, S.; Zhang, X.-M., Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings, Neurocomputing, 445, 180-193 (2021)
[45] Zhang, X.-M.; Han, Q.-L., A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs, IEEE Trans. Cybern., 46, 12, 2745-2757 (2016)
[46] Zhang, R.; Zeng, D.; Zhong, S.; Yu, Y., Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays, Appl. Math. Comput., 310, 57-74 (2017) · Zbl 1426.94180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.