×

Viscosity solutions to the infinity Laplacian equation with lower terms. (English) Zbl 1519.35165

Summary: We establish the existence and uniqueness of viscosity solutions to the Dirichlet problem \[\begin{gathered} \Delta_\infty^h u=f(x,u), \quad \text{in}\,\, \Omega,\\ u=q, \quad \text{on}\,\,\partial\Omega, \end{gathered}\] where \(q\in C(\partial\Omega)\), \(h>1\), \(\Delta_\infty^h u=|Du|^{h-3}\Delta_\infty u\). The operator \(\Delta_\infty u=\langle D^2u Du, Du \rangle\) is the infinity Laplacian which is strongly degenerate, quasilinear and it is associated with the absolutely minimizing Lipschitz extension. When the nonhomogeneous term \(f(x, t)\) is non-decreasing in \(t\), we prove the existence of the viscosity solution via Perron’s method. We also establish a uniqueness result based on the perturbation analysis of the viscosity solutions. If the function \(f(x, t)\) is nonpositive (nonnegative) and non-increasing in \(t\), we also give the existence of viscosity solutions by an iteration technique under the condition that the domain has small diameter. Furthermore, we investigate the existence and uniqueness of viscosity solutions to the boundary-value problem with singularity \[\begin{gathered} \Delta_\infty^h u=-b(x)g(u), \quad \text{in}\,\, \Omega, \\ u>0, \quad \text{in}\,\, \Omega, \cr u=0, \quad \text{on}\,\,\partial\Omega, \end{gathered}\] when the domain satisfies some regular condition. We analyze asymptotic estimates for the viscosity solution near the boundary.

MSC:

35J70 Degenerate elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35D40 Viscosity solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] S. Armstrong, C. Smart; An easy proof Jensen’s theorem on the uniqueness of infinity har-monic functions, Calc. Var. Partial Differ. Equ., 37 (2010), 381-384. · Zbl 1187.35104
[2] G. Aronsson; Minimization problems for the functional sup x F (x, f (x), f (x)), Ark. Mat., 6 (1965), 33-53. · Zbl 0156.12502
[3] G. Aronsson; Minimization problems for the functional sup x F (x, f (x), f (x)) II, Ark. Mat., 6 (1966), 409-431. · Zbl 0156.12502
[4] G. Aronsson; Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561. · Zbl 0158.05001
[5] G. Aronsson; Minimization problems for the functional sup x F (x, f (x), f (x)) III, Ark. Mat., 7 (1969), 509-512. · Zbl 0181.11902
[6] G. Aronsson, M. G. Crandall, P. Juutinen; A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505. · Zbl 1150.35047
[7] G. Barles, J. Busca; Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Diff. Equations, 26 (2001), 2323-2337. · Zbl 0997.35023
[8] E.N. Barron, L.C. Evans, R. Jensen; The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101. · Zbl 1125.35019
[9] E. Barron, R. Jensen, C. Wang; The Euler equation and absolute minimizers of L ∞ func-tionals, Arch. Ration. Mech. Anal., 157 (2001), 255-283. · Zbl 0979.49003
[10] T. Bhattacharya, A. Mohammed; On solutions to Dirichlet problems involving the infinity-Laplacian, Adv. Calc. Var., 4 (2011), 445-487. · Zbl 1232.35056
[11] T. Bhattacharya, A. Mohammed; Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv. Differential Equations, 17 (2012), no.3-4, 225-266. · Zbl 1258.35094
[12] N. H. Binghan, C. M. Goldie, J. L. Teugels; Regular variation, Cambridge: Cambridge University Press, 1987. · Zbl 0617.26001
[13] T. Biset, A. Mohammed; A singular boundary value problem for a degenerate elliptic PDE, Nonlinear Analysis: Theory, Methods & Applications, 119 (2015), 222-234. · Zbl 1318.35047
[14] A. Biswas, H. H. Vo; Liouville theorems for infinity Laplacian with gradient and KPP type equation, preprint. · Zbl 1529.35210
[15] F. Cîrstea, V. Rǎdulescu; Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Sér. I, 335 (2002), 447-452. · Zbl 1183.35124
[16] F. Cîrstea, V. Rǎdulescu; Asymptotics for the blow-up boundary solution of the logistic equation with absorption, C. R. Acad. Sci. Paris, Sér. I, 336 (2003), 231-236. · Zbl 1068.35035
[17] F. Cîrstea, V. Rǎdulescu; Nonlinear problems with boundary blow-up: aKaramata regular variation theory approach, Asymptot. Anal., 46 (2006), 275-298. · Zbl 1245.35037
[18] M. G. Crandall; A visit with the ∞-Laplace equation, Calculus of variations and nonlinear partial differential equations, 75-122, Lecture Notes in Math., 1927, Springer, Berlin, 2008. · Zbl 1357.49112
[19] M. G. Crandall, L. C. Evans, R. F. Gariepy; Optimal Lipschitz extensions and the infinity-Laplacian, Calc. Var. Partial Differ. Equ., 13 (2001), 123-139. · Zbl 0996.49019
[20] M. G. Crandall, L. C. Evans, P. L. Lions; Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 282 (1984), 487-502. · Zbl 0543.35011
[21] M. G. Crandall, G. Gunnarsson, P. Wang; Uniqueness of ∞-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), no.10-12, 1587-1615. · Zbl 1135.35048
[22] M. G. Crandall, H. Ishii, P. L. Lions; User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N. S.), 27 (1992), 1-67. · Zbl 0755.35015
[23] M. G. Crandall, P. L. Lions; Viscosity solutions and Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277 (1983), 1-42. · Zbl 0599.35024
[24] L. C. Evans; The 1-Laplacian, the infinity Laplacian and differential games, Contemp. Math., 446 (2007), 245-254. · Zbl 1200.35114
[25] R. Jensen; Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. · Zbl 0789.35008
[26] C. Li, F. Liu; Large solutions of a class of degenerate equations associated with infinity Laplacian, Adv. Nonlinear Stud., 22 (2022), 67-87. · Zbl 1485.35193
[27] C. Li, F. Liu, Peibiao Zhao; Boundary blow-up solutions to the equation involved in infinity Laplacian, J. Aust. Math. Soc., 114 (2023), 337-358. · Zbl 1514.35186
[28] T. Lin, F. Liu; Viscosity solutions to the infinity Laplacian equation with strong absorptions, Comm. Pure and Applied Anal., 21 (2022), no. 12, 4251-4267. · Zbl 1503.35066
[29] F. Liu; The eigenvalue problem for a class of degenerate operators related to the normalized p-Laplacian, Disc. & Conti. Dynamical Systems(B), 27 (2022), no. 5, 2701-2720. · Zbl 1489.35150
[30] F. Liu, L. Tian, P. Zhao; A weighted eigenvalue problem of the degenerate operator associated with infinity Laplacian, Nonlinear Analysis:TMA, 200 (2020), 112001, 15 pp. · Zbl 1448.35196
[31] F. Liu, X. Yang; A weighted eigenvalue problem of the biased infinity Laplacian, Nonlinearity, 34 (2021), 1197-1237. · Zbl 1459.35299
[32] F. Liu, X. Yang; Solutions to an inhomogeneous equation involving infinity-Laplacian, Non-linear Analysis: Theory, Methods & Applications, 75 (2012), 5693-5701. · Zbl 1253.35063
[33] R. López-Soriano, J. C. Navarro-Climent, J. D. Rossi; The infinity Laplacian with a transport term, J. Math. Anal. Appl., 398 (2013), 752-765. · Zbl 1257.35076
[34] G. Lu, P. Wang;
[35] A PDE perspective of the normalized infinity Laplacian, Comm. Part. Diff. Eqns., 33 (2008), no.10, 1788-1817. · Zbl 1157.35388
[36] G. Lu, P. Wang; Inhomogeneous infinity Laplace equation. Adv. Math., 217 (2008), 1838-1868. · Zbl 1152.35042
[37] G. Lu, P. Wang; A uniqueness theorem for degenerate elliptic equations, Seminario Interdis-ciplinare di Matematica, 7 (2008), 207-222. · Zbl 1187.35109
[38] G. Lu, P. Wang; Infinity Laplace equation with non-trivial right-hand side, Electronic Journal of Differential Equations, 77 (2010), 517-532. · Zbl 1194.35194
[39] L. Mi, Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian, J. Math. Anal. Appl., 425 (2015), 1061-1070. · Zbl 1312.35071
[40] Y. Peres, G. Pete, S. Somersille; Biased tug-of-war, the biased infinity Laplacian, and com-parison with exponential cones, Calc. Var. PDE. 38 (2010), no.3-4, 541-564. · Zbl 1195.91007
[41] Y. Peres, O. Schramm, S. Sheffield, D. Wilson; Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), no.1, 167-210. · Zbl 1206.91002
[42] S. I. Resnick; Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust, 4, Springer-Verlag, New York, Berlin, 1987. xii+320 pp. · Zbl 0633.60001
[43] J. D. Rossi; Tug-of-war games and PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), no.2, 319-369. · Zbl 1242.35091
[44] E. Seneta; Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin-New York, 1976, v+112 pp. · Zbl 0324.26002
[45] Y. Yu; Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26 (2009), no.4, 1299-1308. · Zbl 1176.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.