×

The eigenvalue problem for a class of degenerate operators related to the normalized \(p\)-Laplacian. (English) Zbl 1489.35150

Summary: In this paper, we investigate a weighted Dirichlet eigenvalue problem for a class of degenerate operators related to the \(h\) degree homogeneous \(p\)-Laplacian \[ \begin{cases} \begin{aligned} &|Du|^{h-1} \Delta_p^N u+ \lambda a(x)|u|^{h-1}u = 0, \quad \text{in }\Omega,\\ &u = 0, \quad \text{on } \partial\Omega. \end{aligned} \end{cases} \] Here \(a(x)\) is a positive continuous bounded function in the closure of \(\Omega\subset \mathbb{R}^n\) (\(n\geq 2\)), \(h>1\), \(2< p<\infty\), and \(\Delta_p^N u = \frac{1}{p}|Du|^{2-p} \text{div} (|Du|^{p-2}Du)\) is the normalized version of the \(p\)-Laplacian arising from a stochastic game named Tug-of-War with noise. We prove the existence of the principal eigenvalue \(\lambda_\Omega\), which is positive and has a corresponding positive eigenfunction for \(p>n\). The method is based on the maximum principle and approach analysis to the weighted eigenvalue problem. When a parameter \(\lambda<\lambda_\Omega\), we establish some existence and uniqueness results related to this problem. During this procedure, we also prove some regularity estimates including Hölder continuity and Harnack inequality.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J70 Degenerate elliptic equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
Full Text: DOI

References:

[1] G. Aronsson; M. G. Crandall; P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[2] M. Bardi; F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel), 73, 276-285 (1999) · Zbl 0939.35038 · doi:10.1007/s000130050399
[3] H. Berestycki; L. Nirenberg; S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47, 47-92 (1994) · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[4] H. Berestycki; I. C. Dolcetta; A. Porretta; L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators, J. Math. Pures Appl., 103, 1276-1293 (2015) · Zbl 1323.35123 · doi:10.1016/j.matpur.2014.10.012
[5] I. Birindelli; F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations, 11, 91-119 (2006) · Zbl 1132.35427
[6] I. Birindelli; F. Demengel, Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Commun. Pure Appl. Anal., 6, 335-366 (2007) · Zbl 1132.35032 · doi:10.3934/cpaa.2007.6.335
[7] J. Busca; M. J. Esteban; A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci’s operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 187-206 (2005) · Zbl 1205.35087 · doi:10.1016/j.anihpc.2004.05.004
[8] M. G. Crandall; H. Ishii; P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[9] M. G. Crandall; L. C. Evans; R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13, 123-139 (2001) · Zbl 0996.49019 · doi:10.1007/s005260000065
[10] K. Does, An evolution equation involving the normalized \(p\)-Laplacian, Commun. Pure Appl. Anal., 10, 361-396 (2011) · Zbl 1229.35132 · doi:10.3934/cpaa.2011.10.361
[11] A. Elmoataz; M. Toutain; D. Tenbrinck., On the \(p\)-Laplacian and \(\infty \)-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci., 8, 2412-2451 (2015) · Zbl 1330.35488 · doi:10.1137/15M1022793
[12] A. Elmoataz; X. Desquesnes; M. Toutain, On the game \(p\)-Laplacian on weighted graphs with applications in image processing and data clustering, European J. Appl. Math., 28, 922-948 (2017) · Zbl 1390.91039 · doi:10.1017/S0956792517000122
[13] C. Imbert; T. Jin; L. Silvestre, Hölder gradient estimates for a class of singular or degenerate parabolic equations, Adv. Nonlinear Anal., 8, 845-867 (2019) · Zbl 1418.35250 · doi:10.1515/anona-2016-0197
[14] H. Ishii, Viscosity solutions of non-linear partial differential equations, Sugaku Expositions, 9, 135-152 (1996)
[15] H. Ishii; P. L. Lions, Viscosity solutions of fully nonlinear second order elliptic partial differential equations, J. Differential Equations, 83, 26-78 (1990) · Zbl 0708.35031 · doi:10.1016/0022-0396(90)90068-Z
[16] R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[17] P. Juutinen, Principal eigenvalue of a very badly degenerate operator and applications, J. Differential Equations, 236, 532-550 (2007) · Zbl 1132.35066 · doi:10.1016/j.jde.2007.01.020
[18] P. Juutinen; P. Lindqvist; J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation, SIAM J. Math. Anal., 33, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[19] B. Kawohl; S. Kröemer; J. Kurtz, Radial eigenfunctions for the game-theoretic \(p\)-Laplacian on a ball, Differential Integral Equations, 27, 659-670 (2014) · Zbl 1340.35242
[20] M. Lewicka; J. J. Manfredi, Game theoretical methods in PDEs, Boll. Unione Mat. Ital., 7, 211-216 (2014) · Zbl 1322.35139 · doi:10.1007/s40574-014-0011-z
[21] F. Liu; F. Jiang, Parabolic biased infinity Laplacian equation related to the biased tug-of-war, Advanced Nonlinear Studies, 19, 89-112 (2019) · Zbl 1412.35163 · doi:10.1515/ans-2018-2019
[22] Q. Liu; A. Schikorra, General existence of solutions to dynamic programming equations, Commun. Pure Appl. Anal., 14, 167-184 (2015) · Zbl 1326.35395 · doi:10.3934/cpaa.2015.14.167
[23] F. Liu, L. Tian and P. Zhao, A weighted eigenvalue problem of the degenerate operator associated with infinity Laplacian,, Nonlinear Analysis: TMA, 200 (2020), 112001, 15 pp. · Zbl 1448.35196
[24] F. Liu; X. Yang, A weighted eigenvalue problem of the biased infinity Laplacian, Nonlinearity, 34, 1197-1237 (2021) · Zbl 1459.35299 · doi:10.1088/1361-6544/abd85d
[25] G. Lu; P. Wang, A PDE perspective of the normalized infinity Laplacian, Comm. Part. Diff. Eqns., 33, 1788-1817 (2008) · Zbl 1157.35388 · doi:10.1080/03605300802289253
[26] P. J. Martínez-Aparicio; M. Pérez-Llanos; J. D. Rossi, The limit as \(p\rightarrow \infty\) for the eigenvalue problem of the 1-homogeneous \(p\)-Laplacian, Rev. Mat. Complut., 27, 241-258 (2014) · Zbl 1284.35203 · doi:10.1007/s13163-013-0124-4
[27] J. J. Manfredi; M. Parviainen; J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42, 2058-2081 (2010) · Zbl 1231.35107 · doi:10.1137/100782073
[28] J. J. Manfredi; M. Parviainen; J. D. Rossi, On the definition and properties of \(p\)-harmonious functions, Ann. Scuola Normale Sup. Pisa., 11, 215-241 (2012) · Zbl 1252.91014
[29] J. J. Manfredi; M. Parviainen; J. D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var., 18, 81-90 (2012) · Zbl 1233.91042 · doi:10.1051/cocv/2010046
[30] Y. Peres; G. Pete; S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38, 541-564 (2010) · Zbl 1195.91007 · doi:10.1007/s00526-009-0298-2
[31] Y. Peres; O. Schramm; S. Sheffield; D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[32] Y. Peres; S. Sheffield, Tug-of-war with noise: A game theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 91-120 (2008) · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[33] A. Quaas and B. Sirakov, On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators,, C. R. Math. Acad. Sci. Paris, 342 (2006), 115-118. · Zbl 1134.35048
[34] A. Quaas; B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear operators, Adv. Math., 218, 105-135 (2008) · Zbl 1143.35077 · doi:10.1016/j.aim.2007.12.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.