×

Approximate controllability of non-autonomous second order impulsive functional evolution equations in Banach spaces. (English) Zbl 1519.34088

The authors investigate the approximate controllability of an abstract control system whose behavior is alternately governed by the second-order equation \[ \ddot{x}(t) = A x(t) + B u(t) + f(t, x_t), \; t \in [t_{2_i}, t_{2i+1}]. \] (where \(x_t\) is the memory of the state variable \(x\) on some finite time span) and the ”non-instantaneous impulse” dynamics \[ x(t) = \phi(t, x(t_{2i+1}^-)), \; t \in [t_{2i+1}, t_{2_i+2}] \] The authors first determine the conditions under which the abstract linear dynamics \(\ddot{x} = A(t) x(t) + B u(t)\) is approximately controllable. Then, using some extra assumptions, they build for each target state \(x_T\) a family of controls for which they show the existence of a mild solution of the original problem. Finally, they extract from this family a sequence \(u_n\) such that the corresponding final state \(x_n(T)\) converges to \(x(T)\), proving the approximate controllability.
Two detailled applications of this result are given; in both cases, the linear dynamics is the wave equation.

MSC:

34K30 Functional-differential equations in abstract spaces
34K35 Control problems for functional-differential equations
34K45 Functional-differential equations with impulses
34K06 Linear functional-differential equations
93B05 Controllability
37C60 Nonautonomous smooth dynamical systems

References:

[1] Ahmed, HM; El-Borai, MM; El Bab, AO; Ramadan, ME, Approximate controllability of non-instantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound. Value Probl., 2020, 1-25 (2020) · Zbl 1485.93055
[2] Arora, S.; Mohan, MT; Dabas, J., Approximate controllability of the non-autonomous impulsive evolution equation with state-dependent delay in Banach space, Nonlinear Anal. Hybrid Syst., 39, 100989 (2020) · Zbl 1476.34141
[3] Arora, S.; Singh, S.; Dabas, J.; Mohan, MT, Approximate controllability of semilinear impulsive functional differential system with nonlocal conditions, IMA J. Math. Control Inform., 37, 1070-1088 (2020) · Zbl 1478.93045
[4] Arora, S.; Mohan, MT; Dabas, J., Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces, Math. Control. Relat. Fields (2020) · Zbl 1478.93044 · doi:10.3934/mcrf.2020049
[5] Arora, U.; Sukavanam, N., Approximate controllability of second order semilinear stochastic system with nonlocal conditions, Appl. Math. Comput., 258, 111-119 (2015) · Zbl 1338.93067
[6] Barbu, V., Analysis and Control of Nonlinear Infinite Dimensional Systems (1993), New York: Academic Press, New York · Zbl 0776.49005
[7] Barbu, V., Controllability and Stabilization of Parabolic Equations (2018), New York: Springer, New York · Zbl 1417.93005
[8] Benchohra, M.; Henderson, J.; Ntouyas, S., Impulsive Differential Equations and Inclusions (2006), New York: Hindawi Publishing Corporation, New York · Zbl 1130.34003
[9] Bochenek, J., Existence of the fundamental solution of a second order evolution equation, Ann. Polon. Math., 66, 15-35 (1997) · Zbl 0894.34054
[10] Byszewski, L.; Lakshmikantham, V., Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40, 11-19 (1991) · Zbl 0694.34001
[11] Chen, F.; Sun, D.; Shi, J., Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., 288, 136-146 (2003) · Zbl 1087.34045
[12] Colao, V.; Muglia, L.; Xu, HK, Existence of solutions for a second order differential equation with non-instantaneous impulses and delay, Ann. Mat., 195, 697-716 (2016) · Zbl 1344.34084
[13] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0849.60052
[14] Ekeland, I.; Turnbull, T., Infinite-Dimensional Optimization and Convexity (1983), Chicago and London: The University of Chicago press, Chicago and London · Zbl 0565.49003
[15] Feckan, M.; Wang, J., A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal, 46, 915-933 (2015) · Zbl 1381.34081
[16] Fu, X., Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theory, 6, 517-534 (2017) · Zbl 1381.34097
[17] Fu, X.; Rong, H., Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions, Autom. Remote Control, 77, 428-442 (2016) · Zbl 1348.93049
[18] Grudzka, A.; Rykaczewski, K., On approximate controllability of functional impulsive evolution inclusions in a Hilbert space, J. Optim. Theory Appl., 166, 414-439 (2015) · Zbl 1327.93079
[19] Guedda, L., Some remarks in the study of impulsive differential equations and inclusions with delay, Fixed Point Theory, 12, 349-354 (2011) · Zbl 1260.34148
[20] Henriquez, HR, Existence of solutions of non-autonomous second order functional differential equations with infinite delay, Nonlinear Anal., 74, 3333-3352 (2011) · Zbl 1221.34209
[21] Hernández, E.; Henriquez, HR; McKibben, MA, Existence results for abstract impulsive second order neutral functional differential equations, Nonlinear Anal., 70, 2736-2751 (2009) · Zbl 1173.34049
[22] Hernández, E.; O’Regan, D., On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141, 1641-1649 (2013) · Zbl 1266.34101
[23] Kisyński, J., On cosine operator functions and one parameter group of operators, Stud. Math., 49, 93-105 (1972) · Zbl 0216.42104
[24] Kozak, M., An abstract second order temporally inhomogeneous linear differential equation II, Univ. lagel. Acta Math., 32, 263-274 (1995) · Zbl 0829.34048
[25] Kumar, A.; Muslim, M.; Sakthivel, R., Controllability of the second order nonlinear differential equations with non-instantaneous impulses, J. Dyn. Control Syst., 24, 325-342 (2018) · Zbl 1391.34100
[26] Kumar, A.; Vats, RK; Kumar, A., Approximate controllability of second order nonautonomous system with finite delay, J. Dyn. Control Syst., 26, 611-627 (2020) · Zbl 1489.93010
[27] Lakshmikantham, V.; Bainov, DD; Simeonov, PS, Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002
[28] Li, XJ; Yong, JM, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications (1995), Boston: Birkhäuser Boston Inc, Boston
[29] Lin, Y., Time-dependent perturbation theory for abstract evolution equations of second order, Stud. Math., 130, 263-274 (1998) · Zbl 0916.47035
[30] Liang, J.; Liu, JH; Xiao, TJ, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Model., 49, 798-804 (2009) · Zbl 1173.34048
[31] Liu, S.; Wang, J.; O’Regan, D., Trajectory approximately controllability and optimal control for non-instantaneous impulsive inclusions without compactness Topol, Methods Nonlinear Anal., 58, 19-49 (2021) · Zbl 1497.34091
[32] Lunardi, A., On the linear heat equation with fading memory, SIAM J. Math. Anal., 21, 1213-1224 (1990) · Zbl 0716.35031
[33] Mahmudov, NI, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control. Optim., 42, 1604-1622 (2003) · Zbl 1084.93006
[34] Mahmudov, NI; Vijayakumar, V.; Murugesu, R., Approximate controllability of second order evolution differential inclusions in Hilbert spaces, Mediterr. J. Math., 13, 3433-3454 (2016) · Zbl 1362.34097
[35] Malik, M.; Kumar, A.; Feckan, M., Existence, uniqueness, and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. Sci., 30, 204-213 (2018)
[36] Ntouyas, S.K.: Nonlocal initial and boundary value problems: a survey. In: Handbook of Differential Equations: Ordinary Differential Equations, vol. 2, pp. 461-557. Elsevier (2006) · Zbl 1098.34011
[37] Nunziato, JW, On heat conduction in materials with memory, Q. Appl. Math., 29, 187-204 (1971) · Zbl 0227.73011
[38] Obrecht, E., Evolution operators for higher order abstract parabolic equations, Czechoslov. Math. J., 36, 210-222 (1986) · Zbl 0618.35054
[39] Obrecht, E., The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl., 125, 508-530 (1987) · Zbl 0645.34052
[40] Perelson, AS; Neumann, AU; Markowitz, M.; Leonard, JM; Ho, DD, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996)
[41] Pierri, M.; Henríquez, HR; Prokopczyk, A., Global solutions for abstract differential equations with non-instantaneous impulses, Mediterr. J. Math., 49, 1685-1708 (2016) · Zbl 1353.34071
[42] Ravikumar, K., Mohan, M.T., Anguraj, A.: Approximate controllability of a nonautonomous evolution equation in Banach spaces. Numer. Algebra Control Optim. (2020)
[43] Sakthivel, R.; Anandhi, ER; Mahmudov, NI, Approximate controllability of second order systems with state-dependent delay, Numer. Funct. Anal. Optim., 29, 1347-1362 (2008) · Zbl 1153.93006
[44] Serizawa, H.; Watanabe, M., Time-dependent perturbation for cosine families in Banach spaces, Houst. J. Math., 2, 579-586 (1986) · Zbl 0619.47037
[45] Singh, S., Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evol. Equ. Control Theory (2020). doi:10.3934/eect.2020103 · Zbl 1483.34106
[46] Shu, L.; Shu, XB; Mao, J., Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\), Fract. Calc. Appl. Anal., 22, 1086-1112 (2019) · Zbl 1441.93038
[47] Travis, CC; Webb, GF, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar., 32, 75-96 (1978) · Zbl 0388.34039
[48] Travis, CC; Webb, GF, Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houst. J. Math., 3, 555-567 (1977) · Zbl 0386.47024
[49] Travis, C.C., Webb, G.F.: Second order differential equations in Banach space. In: Nonlinear Equations in Abstract Spaces, pp. 331-361. Academic Press (1978) · Zbl 0455.34044
[50] Triggiani, R., Addendum: a note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control. Optim., 18, 98 (1980) · Zbl 0426.93013
[51] Triggiani, R., A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 15, 407-411 (1977) · Zbl 0354.93014
[52] Vijaykumar, V.; Udhayakumar, R.; Dineshkumar, C., Approximate controllability of second order nonlocal neutral differential evolution inclusions, IMA J. Math. Control Inform. (2020) · Zbl 1475.93017 · doi:10.1093/imamci/dnaa001
[53] Wei, W.; Xiang, X.; Peng, Y., Nonlinear impulsive integro-differential equations of mixed type and optimal controls, Optimization, 55, 141-156 (2006) · Zbl 1101.45002
[54] Yan, Z., Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Control, 85, 1051-1062 (2012) · Zbl 1282.93058
[55] Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527-621 (2007) · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.