×

Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. (English) Zbl 1483.34106

Summary: In this paper, we consider the second order semilinear impulsive differential equations with state-dependent delay. First, we consider a linear second order system and establish the approximate controllability result by using a feedback control. Then, we obtain sufficient conditions for the approximate controllability of the considered system in a separable, reflexive Banach space via properties of the resolvent operator and Schauder’s fixed point theorem. Finally, we apply our results to investigate the approximate controllability of the impulsive wave equation with state-dependent delay.

MSC:

34K30 Functional-differential equations in abstract spaces
34K43 Functional-differential equations with state-dependent arguments
34K45 Functional-differential equations with impulses
93B05 Controllability
Full Text: DOI

References:

[1] O. Arino; K. Boushaba; A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Spatial hetrogeneity in ecological models, Nonlinear Anal. Real World Appl., 1, 69-87 (2000) · Zbl 0984.92032 · doi:10.1016/S0362-546X(99)00394-6
[2] S. Arora, M. T. Mohan and J. Dabas, Approximate controllability of the non-autonomous impulsive evolution equation with state-dependent delay in Banach space, accepted in Nonlinear Anal. Hybrid System. · Zbl 1476.34141
[3] S. Arora, M. T. Mohan, and J. Dabas, Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces, accepted in Math. Control. Relat. Fields, (2020).
[4] S. Arora, S. Singh, J. Dabas and M. T. Mohan, Approximate controllability of semilinear impulsive functional differential system with nonlocal conditions, IMA J. Math. Control Inform., (2020). · Zbl 1478.93045
[5] U. Arora; N. Sukavanam, Approximate controllability of second order semilinear stochastic system with variable delay in control and with nonlocal conditions, Rend. Circ. Mat. Palermo (2), 65, 307-322 (2016) · Zbl 1348.93046 · doi:10.1007/s12215-016-0235-0
[6] G. Arthi; K. Balachandran, Controllability of second-order impulsive evolution systems with infinite delay, Nonlinear Anal. Hybrid Syst., 11, 139-153 (2014) · Zbl 1291.93033 · doi:10.1016/j.nahs.2013.08.001
[7] K. Balachandran; S. M. Anthoni, Controllability of second-order semilinear neutral functional differential systems in Banach spaces, Comput. Math. Appl., 41, 1223-1235 (2001) · Zbl 0990.93007 · doi:10.1016/S0898-1221(01)00093-1
[8] K. Balachandran; J. P. Dauer, Controllability of nonlinear systems in Banach spaces: A survey, J. Optim. Theory Appl., 115, 7-28 (2002) · Zbl 1023.93010 · doi:10.1023/A:1019668728098
[9] V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems, Mathematics in Science and Engineering, 190, Academic Press, Inc., Boston, MA, 1993. · Zbl 0776.49005
[10] A. E. Bashirov; N. I. Mahmudov, On concepts of controllability for deterministic and stochastic systems, SIAM J. Control Optim., 37, 1808-1821 (1999) · Zbl 0940.93013 · doi:10.1137/S036301299732184X
[11] A. Bobrowski, The Widder-Arendt theorem on inverting of the Laplace transform, and its relationships with the theory of semigroups of operators, Methods Funct. Anal. Topology, 3, 1-39 (1997) · Zbl 0940.47032
[12] J. Bochenek, An abstract nonlinear second order differential equation, Ann. Polon. Math., 54, 155-166 (1991) · Zbl 0724.34069 · doi:10.4064/ap-54-2-155-166
[13] D. N. Chalishajar and A. Kumar, Total controllability of the second order semi-linear differential equation with infinite delay and non-instantaneous impulses, Math. Comput. Appl., 23 (2018), 13pp.
[14] Y. K. Chang; J. J. Nieto; W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl., 142, 267-273 (2009) · Zbl 1178.93029 · doi:10.1007/s10957-009-9535-2
[15] F. Chen; D. Sun; J. Shi, Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., 288, 136-146 (2003) · Zbl 1087.34045 · doi:10.1016/S0022-247X(03)00586-9
[16] R. F. Curtain and H. Zwart,, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. · Zbl 0839.93001
[17] S. Y. Dobrokhotov; V. E. Nazaikinskii; B. Tirozzi, Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I, Russ. J. Math. Phys., 17, 434-447 (2010) · Zbl 1387.35404 · doi:10.1134/S1061920810040059
[18] I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1983. · Zbl 0565.49003
[19] H. O. Fattorini, Ordinary differential equations in linear topological spaces. I, J. Differential Equations, 5, 72-105 (1969) · Zbl 0175.15101 · doi:10.1016/0022-0396(69)90105-3
[20] H. O. Fattorini, Ordinary differential equations in linear topological spaces. II, J. Differential Equations, 6, 50-70 (1969) · Zbl 0181.42801 · doi:10.1016/0022-0396(69)90117-X
[21] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108, North-Holland Publishing Co., North-Holland, Amsterdam, 1985. · Zbl 0564.34063
[22] C. Gao; K. Li; E. Feng; Z. Xiu, Nonlinear impulse system of fed-batch culture in fermentative production and its properties, Chaos Solitons Fractals, 28, 271-277 (2006) · Zbl 1079.92036 · doi:10.1016/j.chaos.2005.05.027
[23] J. Ginibre; A. Soffer; G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110, 96-130 (1992) · Zbl 0813.35054 · doi:10.1016/0022-1236(92)90044-J
[24] A. Grudzka; K. Rykaczewski, On approximate controllability of functional impulsive evolution inclusions in a Hilbert space, J. Optim. Theory Appl., 166, 414-439 (2015) · Zbl 1327.93079 · doi:10.1007/s10957-014-0671-y
[25] E. Hernández, R. Sakthivel and S. Tanaka Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations, (2008), 11pp. · Zbl 1133.35101
[26] Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. · Zbl 0732.34051
[27] L. F. Ho, Exact controllability of the one-dimensional wave equation with locally distributed control, SIAM J. Control Optim., 28, 733-748 (1990) · Zbl 0701.93008 · doi:10.1137/0328043
[28] J.-R. Kang; Y.-C. Kwun; J.-Y. Park, Controllability of the second-order differential inclusion in Banach spaces, J. Math. Anal. Appl., 285, 537-550 (2003) · Zbl 1049.93008 · doi:10.1016/S0022-247X(03)00423-2
[29] J. Kisyński, On cosine operator functions and one-parameter groups of operators, Studia Math., 44, 93-105 (1972) · Zbl 0232.47045 · doi:10.4064/sm-44-1-93-105
[30] A. Kumar; R. K. Vats; A. Kumar, Approximate controllability of second-order non-autonomous system with finite delay, J. Dyn. Control Syst., 26, 611-627 (2020) · Zbl 1489.93010 · doi:10.1007/s10883-019-09475-0
[31] S. Kumar; N. Sukavanam, Controllability of second-order systems with nonlocal conditions in Banach spaces, Numer. Funct. Anal. Optim., 35, 423-431 (2014) · Zbl 1291.93041 · doi:10.1080/01630563.2013.814067
[32] M. Li and M. Huang, Approximate controllability of second-order impulsive stochastic differential equations with state-dependent delay, J. Appl. Anal. Comput., 8 (2018), 598-619.x · Zbl 1458.93030
[33] M. Li; J. Ma, Approximate controllability of second order impulsive functional differential systems with infinite delay in Banach space, J. Appl. Anal. Comput., 6, 492-514 (2016) · Zbl 1463.93016 · doi:10.11948/2016036
[34] T. Li and Y. Zhou, Cauchy problem of one-dimensional nonlinear wave equations, in Nonlinear Wave Equations, Series in Contemporary Mathematics, 2, Springer, Berlin, Heidelberg, 2017,161-181. · Zbl 1411.35004
[35] X. J. Li and J. M. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995.
[36] J. Liang; J. H. Liu; T.-J. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling, 49, 798-804 (2009) · Zbl 1173.34048 · doi:10.1016/j.mcm.2008.05.046
[37] N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim., 42, 1604-1622 (2003) · Zbl 1084.93006 · doi:10.1137/S0363012901391688
[38] N. I. Mahmudov; V. Vijayakumar; R. Murugesu, Approximate controllability of second-order evolution differential inclusions in Hilbert spaces, Mediterr. J. Math., 13, 3433-3454 (2016) · Zbl 1362.34097 · doi:10.1007/s00009-016-0695-7
[39] E. Marschall, Remarks on normal operators on Banach spaces, Rend. Circ. Mat. Palermo (2), 35, 317-329 (1986) · Zbl 0635.47015 · doi:10.1007/BF02843901
[40] V. Obukhovskii; J.-C. Yao, On impulsive functional differential inclusions with Hille-Yosida operators in Banach spaces, Nonlinear Anal., 73, 1715-1728 (2010) · Zbl 1214.34052 · doi:10.1016/j.na.2010.05.009
[41] T. W. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc., 133, 385-414 (1968) · Zbl 0169.16901 · doi:10.1090/S0002-9947-1968-0231213-6
[42] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[43] K. Ravikumar, M. T. Mohan and A. Anguraj, Approximate controllability of a non-autonomous evolution equation in Banach spaces, Numer. Algebra Control Optim., (2020). · Zbl 1476.34144
[44] R. Sakthivel; E. R. Anandhi; N. I. Mahmudov, Approximate controllability of second-order systems with state-dependent delay, Numer. Funct. Anal. Optim., 29, 1347-1362 (2008) · Zbl 1153.93006 · doi:10.1080/01630560802580901
[45] R. Sakthivel; N. I. Mahmudov; J. H. Kim, Approximate controllability of nonlinear impulsive differential systems, Rep. Math. Phys., 60, 85-96 (2007) · Zbl 1141.93015 · doi:10.1016/S0034-4877(07)80100-5
[46] R. Sakthivel; J. J. Nieto; N. I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwanese J. Math., 14, 1777-1797 (2010) · Zbl 1220.93011 · doi:10.11650/twjm/1500406016
[47] A. M. Samo \({\rm{\mathord{\buildrel{\lower3pt\hbox{\)\scriptscriptstyle\smile \(}} \over i} }}\) lenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. · Zbl 0837.34003
[48] S. Tang; L. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol., 44, 185-199 (2002) · Zbl 0990.92033 · doi:10.1007/s002850100121
[49] C. C. Travis; G. F. Webb, Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math., 3, 555-567 (1977) · Zbl 0386.47024
[50] C. C. Travis; G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32, 75-96 (1978) · Zbl 0388.34039 · doi:10.1007/BF01902205
[51] C. C. Travis and G. F. Webb, Second order differential equations in Banach space, in Nonlinear Equations in Abstract Spaces, Academic Press, New York 1978,331-361. · Zbl 0455.34044
[52] R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 15, 407-411 (1977) · Zbl 0354.93014 · doi:10.1137/0315028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.