×

1324- and 2143-avoiding Kazhdan-Lusztig immanants and \(k\)-positivity. (English) Zbl 1519.15005

The immanant of a matrix \(M=(m_{i,j})\in\mathrm{M}_{n\times n}(\mathbb{C})\) associated with a function \(f:S_n\longrightarrow \mathbb{C}\) is defined as \begin{align*} \mathrm{Imm}_f:& \, \mathrm{M}_{n\times n}(\mathbb{C})\longrightarrow \mathbb{C}\\ & \, (m_{i,j})\mapsto \sum_{w \in S_n}f(w) \prod_{i=1}^n m_{i,w(i)}, \end{align*} where \(n\in \mathbb{N}\) and \(S_n\) is the symmetric group on \(n\) elements. The notable examples of immanants are the determinant and the permanent of a matrix. Here the corresponding functions \(f\) are the sign function of the permutation and a constant function, i.e., \(f(w)=\mathrm{sgn}(w)\) and \(f(w)\equiv 1\), respectively.
Given a \(k\)-positive matrix, i.e., a matrix with all minors of size at most \(k\) being positive, an immanant is said to be \(k\)-positive if it is positive on all \(k\)-positive matrices. Let \(v\in S_n.\) The Kazhdan-Lusztig immanant is defined by \[\mathrm{Imm}_v(M)=\sum_{w \in S_n}(-1)^{l(w)-l(v)}P_{w_0w,w_0v}(1)\prod_{i=1}^n m_{i,w(i)},\] where \(l(w)\) is the length of \(w\), \(w_0\) is the longest permutation in \(S_n,\) and \(P_{x,y}(q)\) is the Kazhdan-Lusztig polynomial in \(q\), for \(x,y \in S_n.\)
Motivated by a conjecture of P. Pylyavskyy [personal communication, 2018] about the \(k\)-positivity of Kazhdan-Lusztig immanants for avoiding pattern permutations, the authors provide a description of certain \(k\)-positive Kazhdan-Lusztig immanants. Theorem 1.3 shows that \(\mathrm{Imm}_v\) is \(k\)-positive if \(v\in S_n\) is avoiding \(1324\) and \(2143\), and such that if \(i<j\) and \(v(i)<v(j),\) then \(j-i\le k\) or \(v(j)-v(i)\le k\). The first half of the paper proves this result by relating permutations to graphs and making use of Dodgson’s condensation. Later parts of the paper discuss the conditions of the main result in relation to the conjecture. As a byproduct, the paper expands on the motivations for the following question: For which \(v\in S_n\) do we have \(\mathrm{Imm}_v\) \(k\)-positive? Generalisations to semisimple Lie groups and cluster algebras are discussed as well.

MSC:

15A15 Determinants, permanents, traces, other special matrix functions
05E10 Combinatorial aspects of representation theory
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
20C30 Representations of finite symmetric groups

References:

[1] Berenstein, A., Fomin, S., and Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J.126(2005), no. 1, 1-52. http://doi.org/10.1215/S0012-7094-04-12611-9 · Zbl 1135.16013
[2] Billey, S. C. and Warrington, G. S., Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations. J. Algebraic Combin.13(2001), no. 2, 111-136. · Zbl 0979.05109
[3] Björner, A. and Brenti, F., Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231, Springer, New York, 2005. http://doi.org/10.1007/3-540-27596-7 · Zbl 1110.05001
[4] Brosowsky, A., Chepuri, S., and Mason, A., Parametrizations of \(k\) -nonnegative matrices: cluster algebras and \(k\) -positivity tests. J. Combin. Theory Ser. A174(2020), 105217. https://arxiv.org/pdf/1712.05037.pdf · Zbl 1451.13066
[5] Fomin, S. and Zelevinsky, A., Totally nonnegative and oscillatory elements in semisimple groups. Proc. Amer. Math. Soc.128(2000), no. 12, 3749-3759. http://doi.org/10.1090/S0002-9939-00-05487-3 · Zbl 0953.22016
[6] Goulden, I. P. and Jackson, D. M., Immanants of combinatorial matrices. J. Algebra148(1992), no. 2, 305-324. http://doi.org/10.1016/0021-8693(92)90196-S. · Zbl 0756.15009
[7] Greene, C., Proof of a conjecture on immanants of the Jacobi-Trudi matrix. Linear Algebra Appl.171(1992), 65-79. http://doi.org/10.1016/0024-3795(92)90250-E · Zbl 0761.15005
[8] Haiman, M., Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc.6(1993), no. 3, 569-595. http://doi.org/10.2307/2152777 · Zbl 0817.20048
[9] Kazhdan, D. and Lusztig, G., Schubert varieties and Poincaré duality. In: Geometry of the Laplace operator (Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, American Mathematical Society, Providence, RI, 1980, pp. 185-203. http://doi.org/10.1090/pspum/036 · Zbl 0461.14015
[10] Lakshmibai, V. and Sandhya, B., Criterion for smoothness of Schubert varieties in Sl(n)/B. Proc. Indian Acad. Sci. Math. Sci.100(1990), no. 1, 45-52. http://doi.org/10.1007/BF02881113 · Zbl 0714.14033
[11] Lusztig, G., Total positivity in reductive groups. In: Lie theory and geometry Progr. Math., 123, Birkhäuser, Boston, MA, 1994, pp. 531-568. http://doi.org/10.1007/978-1-4612-0261-5_20 · Zbl 0845.20034
[12] Pylyavskyy, P., Personal communication. Nov. 28, 2018.
[13] Rhoades, B. and Skandera, M., Kazhdan-Lusztig immanants and products of matrix minors. J. Algebra304(2006), no. 2, 793-811. http://doi.org/10.1016/j.jalgebra.2005.07.017 · Zbl 1129.15005
[14] Sjöstrand, J., Bruhat intervals as rooks on skew Ferrers boards. J. Combin. Theory Ser. A114(2007), no. 7, 1182-1198. http://doi.org/10.1016/j.jcta.2007.01.001 · Zbl 1124.05006
[15] Skandera, M., On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations. J. Pure Appl. Algebra212(2008), no. 5, 1086-1104. http://doi.org/10.1016/j.jpaa.2007.09.007 · Zbl 1220.05132
[16] Stembridge, J. R., Immanants of totally positive matrices are nonnegative. Bull. Lond. Math. Soc.23(1991), no. 5, 422-428. http://doi.org/10.1112/blms/23.5.422 · Zbl 0709.15006
[17] Stembridge, J. R., Some conjectures for immanants. Canad. J. Math.44(1992), no. 5, 1079-1099. http://doi.org/10.4153/CJM-1992-066-1 · Zbl 0774.15004
[18] Tenner, B. E., Pattern avoidance and the Bruhat order. J. Combin. Theory Ser. A114(2007), no. 5, 888-905. http://doi.org/10.1016/j.jcta.2006.10.003 · Zbl 1146.05054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.