×

Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations. (English) Zbl 0979.05109

The Hecke algebra \(\mathcal H\) associated to a finite Weyl group \(W\) has basis \(T_w\) indexed by the elements of \(W\) and for all generators \(s\) of \(W\) we have \(T_sT_w=T_{sw}\), if \(l(sw)>l(w)\) and \(T_s^2=(q-1)T_s+qT_e\) (where \(e\) is the identity element of \(W\)). It is an algebra over \(A={\mathbb Q} (q^{1/2})\). An involution on \(A\) by \(\overline{q^{1/2}}=q^{-1/2}\) we extend to an involution \(i\) on \(\mathcal H\) by setting: \(i(\sum_w\alpha_wT_w)=\sum_w\bar \alpha_w(T_{w^{-1}})^{-1}\). The Kazhdan-Lusztig polynomials are determined uniquely by the following: For any \(w\in W\) there is a unique element \(C_w'\in {\mathcal H}\) such that \(C_w'=q^{-l(w)/2}\sum_{x\leq w}P_{x,w}T_x\) and \(i(C_w')=C_w'\), where \(P_{x,w}\) is a polynomial in \(q\) of degree at most \((l(w)-l(x)-1)/2\) for \(x<w\), \(P_{w,w}=1\) and \(P_{x,w}=0\), if \(x\not\leq w\). Theorem 1. Let \({\mathbf a}=s_{i_1}\dots s_{i_r}\) be a reduced expression for \(w\in S_n\). The following are equivalent: (1) \(w\) is 321-hexagon-avoiding. (2) \(P_{x,w}=\sum q^{d(\sigma)}\), where \(d(\sigma)\) is the defect statistic and the sum is over all masks \(\sigma\) on \(\mathbf a\) whose product is \(x\). (3) The Poincaré polynomial for the full intersection cohomology group of \(X_w\) is \(\sum_i \dim(IH^{2i}(X_w))q^i=(1+q)^{l(w)}\). (4) The Kazhdan-Lusztig basis element \(C_w'\) satisfies \(C_w'=C_{s_{i_1}}'\dots C_{s_{i_r}}'\). (5) The Bott-Samelson resolution of \(X_w\) is small. (6) \(IH_*(X_w)\simeq H_*(Y)\), where \(Y\) is the Bott-Samelson resolution of \(X_w\).

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05A05 Permutations, words, matrices

References:

[1] A. Beilinson and J. Bernstein, “Localization of g-modules,” C.R. Acad. Sci. Paris Ser. I Math292 (1981), 15-18. · Zbl 0476.14019
[2] S. Billey, W. Jockusch, and R. Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Comb. 2 (1993), 345-374. · Zbl 0790.05093
[3] S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Birkhäuser, Number 182 in Progress in Mathematics. Boston, 2000. · Zbl 0959.14032
[4] B. Bollobás. Graph Theory, Springer-Verlag, New York, 1979. · Zbl 0411.05032
[5] R. Bott and H. Samelson, “Applications of the theory of Morse to symmetric spaces,” Amer. J. Math. 80 (1958), 964-1029. · Zbl 0101.39702
[6] N. Bourbaki, Groups et Algebres de Lie, vol. 4-6. Masson, 1957.
[7] F. Brenti, “A combinatorial formula for Kazhdan-Lusztig polynomials,” Invent. Math. 118(2), (1994), 371-394. · Zbl 0836.20054
[8] F. Brenti, “Combinatorial expansions of Kazhdan-Lusztig polynomials,” J. London Math. Soc. 55(2), (1997), 448-472. · Zbl 0895.20029
[9] F. Brenti, “Kazhdan-Lusztig polynomials and <Emphasis Type=”Italic“>R-polynomials from a combinatorial point of view,” Discrete Math. 193(1-3), (1998), 93-116. · Zbl 1061.05511
[10] F. Brenti and R. Simion, Enumerative aspects of some Kazhdan-Lusztig polynomials. Preprint, 1998. · Zbl 0958.05138
[11] J.-L. Brylinski and M. Kashiwara, “Kazhdan-Lusztig conjectures and holonomic systems,” Invent. Math. 64 (1981), 387-410. · Zbl 0473.22009
[12] J.B. Carrell, “The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties,” Proceedings of Symposia in Pure Math. 56(Part 1), (1994), 53-61. · Zbl 0818.14020
[13] M. Demazure. “Désingularization des variétés de Schubert généralisées,” Ann. Sc. E.N.S. 4(7), (1974), 53-58. · Zbl 0312.14009
[14] V. Deodhar, “Local Poincaré duality and non-singularity of Schubert varieties,” Comm. Algebra13 (1985), 1379-1388. · Zbl 0579.14046
[15] V. Deodhar, “A combinatorial settting for questions in Kazhdan-Lusztig theory,” Geom. Dedicata36(1), (1990), 95-119. · Zbl 0716.17015
[16] V. Deodhar, “A brief survey of Kazhdan-Lusztig theory and related topics,” Proceedings of Symposia in Pure Math56(1), 1994. · Zbl 0836.20060
[17] C.K. Fan, “A Hecke algebra quotient and properties of commutative elements of a Weyl group,” Ph.D. Thesis, MIT, 1995.
[18] C.K. Fan, “Schubert varieties and short braidedness,” Trans. Groups3(1), (1998), 51-56. · Zbl 0912.20033
[19] C.K. Fan and R.M. Green, “Monomials and Temperley-Lieb algebras,” Journal of Algebra190 (1997), 498-517. · Zbl 0899.20018
[20] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, UK, 1990. · Zbl 0725.20028
[21] D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke algebras,” Inv. Math. 53 (1979), 165-184. · Zbl 0499.20035
[22] D. Kazhdan and G. Lusztig, “Schubert varieties and Poincaré duality,” Proc. Symp. Pure. Math., A.M.S. 36 (1980), 185-203. · Zbl 0461.14015
[23] F. Kirwan, An Introduction to Intersection Homology Theory, Longman Scientific and Technical, London, 1988. · Zbl 0656.55002
[24] D.E. Knuth, The Art of Computer Programming, vol. 3. Addison-Wesley, Reading, MA, 1973. · Zbl 0302.68010
[25] V. Lakshmibai and B. Sandhya, “Criterion for smoothness of Schubert varieties in <Emphasis Type=”Italic“>SL(n)/B,” Proc. Indian Acad. Sci. (Math Sci.) 100(1), (1990), 45-52. · Zbl 0714.14033
[26] A. Lascoux, “Polynomes de Kazhdan-Lusztig pour les varietes de Schubert vexillaires,” (French) [Kazhdan-Lusztig polynomials for vexillary Schubert varieties]. C.R. Acad. Sci.Paris Sr. I Math. 321(6), (1995), 667-670. · Zbl 0886.05117
[27] A. Lascoux and M.P. Schützenberger, “Polynomes de Kazhdan & Lusztig pour les Grassmanniennes,” (French) [Kazhdan-Lusztig polynomials for Grassmannians]. Astérisque87-88 (1981), 249-266, Young tableaux and Schur functions in algebra and geometry (Toru?, 1980). · Zbl 0504.20007
[28] G. Lusztig, “Tight monomials in quantized enveloping algebras,” Israel Math. Conf. Proc. 7 (1993), 117-132. · Zbl 0948.17501
[29] R. Simion and F.W. Schmidt, “Restricted permutations,” European J. of Combinatorics6 (1985), 383-406. · Zbl 0615.05002
[30] J. Stembridge, “On the fully commutative elements of Coxeter groups,” J. Alg. Combin. 5(4), (1996), 353-385. · Zbl 0864.20025
[31] J. Stembridge, “The enumeration of fully commutative elements of Coxeter groups,” J. Alg. Combin. 7(3), (1998), 291-320. · Zbl 0897.05087
[32] J. Tits, “Le problème des mots dans les groupes de Coxeter,” Symposia Math 1:175-185, 1968; Ist. Naz. Alta Mat. (1968), Symposia Math., vol. 1, Academic Press, London. · Zbl 0206.03002
[33] A. Vainshtein, B. Shapiro, and M. Shapiro, “Kazhdan-Lusztig polynomials for certain varieties of incomplete flags,” Discrete Math. 180 (1998), 345-355. · Zbl 0915.14029
[34] G.X. Viennot, “Heaps of pieces. I. Basic definitions and combinatorial lemmas,” Graph Theory and its Applications: East and West, Jinan, pp. 542-570, 1986. · Zbl 0792.05012
[35] G.S. Warrington, In preparation. Ph.D. Thesis, Harvard University.
[36] A.V. ZelevinskiMi, “Small resolutions of singularities of Schubert varieties,” Functional Anal. Appl. 17(2), (1983), 142-144. · Zbl 0559.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.