×

Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses. (English) Zbl 1518.93146

Summary: This paper is devoted to exploring a new class of Atangana-Baleanu fractional stochastic differential systems driven by fractional Brownian motion with non-instantaneous impulsive effects. Using resolvent family, fixed point technique, and fractional calculus, we analysed the existence and uniqueness of the mild solution. Moreover, we discussed the stability criteria for the proposed problem. A numerical example is given to illustrate the theoretical results.

MSC:

93E15 Stochastic stability in control theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34A08 Fractional ordinary differential equations
93C27 Impulsive control/observation systems
34A37 Ordinary differential equations with impulses
60G22 Fractional processes, including fractional Brownian motion
Full Text: DOI

References:

[1] Agarwal, R.; Almeida, R.; Hristova, S.; O’Regan, D., Non-Instantaneous impulsive fractional differential equations with state dependent delay and practical stability, Acta Mathematica Scientia, 41, 1699-1718 (2021) · Zbl 1513.34294 · doi:10.1007/s10473-021-0518-1
[2] Agarwal, R.; Hristova, S.; O’Regan, D., A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fractional Calculus and Applied Analysis, 19, 2, 290-318 (2016) · Zbl 1343.34006 · doi:10.1515/fca-2016-0017
[3] Agarwal, R.; Hristova, S.; O’Regan, D., Non-instantaneous impulses in caputo fractional differential equations, Fractional Calculus and Applied Analysis, 20, 3, 595-622 (2017) · Zbl 1370.34008 · doi:10.1515/fca-2017-0032
[4] Ahmed, H. M.; Wang, J., Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bulletin of the Iranian Mathematical Society, 44, 673-690 (2018) · Zbl 1409.34005 · doi:10.1007/s41980-018-0043-8
[5] Aimene, D.; Baleanu, D.; Seba, D., Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos, Solitons & Fractals, 128, 51-57 (2019) · Zbl 1483.93035 · doi:10.1016/j.chaos.2019.07.027
[6] Arjunan, M. M.; Abdeljawad, T.; Kavitha, V.; Yousef, A., On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses, Chaos, Solitons & Fractals, 148 (2021) · Zbl 1485.34152 · doi:10.1016/j.chaos.2021.111075
[7] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular Kernel: Theory and application to heat transfer model, Thermal Science, 20, 2, 763-769 (2016) · doi:10.2298/TSCI160111018A
[8] Atangana, A.; Gómez-Aguilar, J. F., Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numerical Methods for Partial Differential Equations, 34, 5, 1502-1523 (2018) · Zbl 1417.65113 · doi:10.1002/num.v34.5
[9] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with atangana-baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89, 447-454 (2016) · Zbl 1360.34150 · doi:10.1016/j.chaos.2016.02.012
[10] Bainov, D.; Simeonov, P., Integral inequalities and applications (1992), Kluwer Academic Publishers Group · Zbl 0759.26012
[11] Bedi, P.; Kumar, A.; Khan, A., Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos, Solitons & Fractals, 150 (2021) · Zbl 1498.34018 · doi:10.1016/j.chaos.2021.111153
[12] Boufoussi, B.; Hajji, S., Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statistics & Probability Letters, 82, 8, 1549-1558 (2012) · Zbl 1248.60069 · doi:10.1016/j.spl.2012.04.013
[13] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 2, 73-85 (2015) · doi:10.12785/pfda/010201
[14] Da Prato, G.; Zabczyk, J., Stochastic equations in infinite dimensions, 44 (1992), Cambridge University Press · Zbl 0761.60052
[15] Dhayal, R.; Malik, M., Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos, Solitons & Fractals, 151 (2021) · Zbl 1498.34199 · doi:10.1016/j.chaos.2021.111292
[16] Dhayal, R.; Malik, M.; Abbas, S., Approximate controllability for a class of non-instantaneous impulsive stochastic fractional differential equation driven by fractional Brownian motion, Differential Equations and Dynamical Systems, 29, 175-191 (2021) · Zbl 1466.34006 · doi:10.1007/s12591-019-00463-1
[17] Dhayal, R.; Malik, M.; Abbas, S., Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order \(####\), Stochastics, 93, 5, 780-802 (2021) · Zbl 1490.65009 · doi:10.1080/17442508.2020.1801685
[18] Dhayal, R.; Malik, M.; Abbas, S.; Debbouche, A., Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Mathematical Methods in the Applied Sciences, 43, 7, 4107-4124 (2020) · Zbl 1448.49034 · doi:10.1002/mma.6177
[19] Ding, Y.; Fečkan, M.; Wang, J., Stability for conformable impulsive differential equations, Electronic Journal of Differential Equations, 2020, 118, 1-19 (2020) · Zbl 1462.34040
[20] Hernández, E.; O’Regan, D., On a new class of abstract impulsive differential equations, Proceedings of the American Mathematical Society, 141, 5, 1641-1649 (2013) · Zbl 1266.34101 · doi:10.1090/proc/2013-141-05
[21] Kumar, A.; Pandey, D. N., Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions, Chaos, Solitons & Fractals, 132 (2020) · Zbl 1434.34069 · doi:10.1016/j.chaos.2019.109551
[22] Kumar, V.; Malik, M.; Debbouche, A., Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses, Applied Mathematics and Computation, 391 (2021) · Zbl 1474.34384 · doi:10.1016/j.amc.2020.125633
[23] Li, C. P.; Zhang, F. R., A survey on the stability of fractional differential equations, The European Physical Journal Special Topics, 193, 27-47 (2011) · doi:10.1140/epjst/e2011-01379-1
[24] Li, H.; Xu, X.; Ding, X., Finite-time stability analysis of stochastic switched boolean networks with impulsive effect, Applied Mathematics and Computation, 347, 557-565 (2019) · Zbl 1428.93054 · doi:10.1016/j.amc.2018.11.018
[25] Li, M.; Debbouche, A.; Wang, J., Relative controllability in fractional differential equations with pure delay, Mathematical Methods in the Applied Sciences, 41, 18, 8906-8914 (2018) · Zbl 1406.34013 · doi:10.1002/mma.4651
[26] Lin, Y.; Zhang, Y., Exponential stability of impulsive discrete-time systems with infinite delays, International Journal of Systems Science, 49, 16, 3272-3283 (2018) · Zbl 1482.93514 · doi:10.1080/00207721.2018.1536233
[27] Lu, X.; Li, H.; Wang, C.; Zhang, X., Stability analysis of positive switched impulsive systems with delay on time scales, International Journal of Robust and Nonlinear Control, 30, 16, 6879-6890 (2020) · Zbl 1525.93328 · doi:10.1002/rnc.v30.16
[28] Luo, D.; Tian, M.; Zhu, Q., Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos, Solitons & Fractals, 158 (2022) · Zbl 1505.93225 · doi:10.1016/j.chaos.2022.111996
[29] Mao, X., Stochastic differential equations and applications (1997), Horwood Publishing Limited · Zbl 0874.60050
[30] Nualart, D., The Malliavin calculus and related topics (2006), Springer-Verlag · Zbl 1099.60003
[31] Podlubny, I., Fractional differential equations, 198 (1993), Academic Press · Zbl 0918.34010
[32] Pratap, A.; Raja, R.; Agarwal, R. P.; Alzabut, R.; Niezabitowski, M.; Hincal, E., Further results on asymptotic and finite-time stability analysis of fractional-order time-delayed genetic regulatory networks, Neurocomputing, 475, 26-37 (2022) · doi:10.1016/j.neucom.2021.11.088
[33] Sathiyaraj, T.; Balasubramaniam, P., Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion, ISA Transactions, 82, 107-119 (2018) · doi:10.1016/j.isatra.2017.11.005
[34] Senthilraj, S.; Raja, R.; Zhu, Q.; Samidurai, R.; Zhou, H., Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations, Neurocomputing, 214, 981-990 (2016) · doi:10.1016/j.neucom.2016.07.018
[35] Shen, G.; Xiao, R.; Yin, X., Averaging principle and stability of hybrid stochastic fractional differential equations driven by Lévy noise, International Journal of Systems Science, 51, 12, 2115-2133 (2020) · Zbl 1483.93691 · doi:10.1080/00207721.2020.1784493
[36] Wang, J.; Fečkan, M., A general class of impulsive evolution equations, Topological Methods in Nonlinear Analysis, 46, 2, 915-933 (2015) · Zbl 1381.34081 · doi:10.12775/TMNA.2015.072
[37] Wang, J.; Fečkan, M.; Tian, Y., Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterranean Journal of Mathematics, 14 (2021) · Zbl 1373.34031 · doi:10.1007/s00009-017-0867-0
[38] Wang, J.; Fečkan, M.; Zhou, Y., A survey on impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 19, 4, 806-831 (2016) · Zbl 1344.35169 · doi:10.1515/fca-2016-0044
[39] Yan, Z.; Jia, X., Existence and controllability results for a new class of impulsive stochastic partial integro-differential inclusions with state-dependent delay, Asian Journal Control, 19, 3, 874-899 (2017) · Zbl 1366.93624 · doi:10.1002/asjc.1413
[40] Yan, Z.; Jia, X., Optimal controls of fractional impulsive partial neutral stochastic integro-differential systems with infinite delay in Hilbert spaces, International Journal of Control, Automation and Systems, 15, 1051-1068 (2017) · doi:10.1007/s12555-016-0213-5
[41] Yang, P.; Wang, J.; Fečkan, M., Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations, Mathematical Methods in the Applied Sciences, 43, 9, 5905-5926 (2020) · Zbl 1458.34111 · doi:10.1002/mma.v43.9
[42] Zhou, Y.; Wang, J.; Zhang, L., Basic theory of fractional differential equations (2017), World Scientific Publishing Co. Pte. Ltd · Zbl 1360.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.