×

Painlevé-Gullstrand coordinates for Schwarzschild-de Sitter spacetime. (English) Zbl 1518.83061

Summary: The Painlevé-Gullstrand coordinates are extended to describe the black hole in the cosmological environment: the Schwarzschild-de Sitter black hole, which has two horizons. The extension is made using the Arnowitt-Deser-Misner formalism. In this extension, which describes the metric in the whole range of radial coordinates \(0<r<\infty\), there is the point \(r=r_0\) at which the shift function (velocity) changes sign. At this point the observer is at rest, while the observers at \(r<r_0\) are free falling to the black hole and the observers at \(r>r_0\) are free falling towards the cosmological horizon. The existence of the stationary observer allows to determine the temperature of Hawking radiation, which is in agreement with R. Bousso and S. W. Hawking [Phys. Rev. D (3) 54, No. 10, 6312–6322 (1996; doi:10.1103/PhysRevD.54.6312)]. It is the red-shifted modification of the conventional Hawking temperature determined by the gravity at the horizon. We also consider the Painlevé-Gullstrand coordinates and their extension for such configurations as Schwarzschild-de Sitter white hole, where the sign of the shift function is everywhere positive; the black hole in the environment of the contracting de Sitter spacetime, where the sign of the shift function is everywhere negative; and the white hole in the contracting de Sitter spacetime, where the shift velocity changes sign at \(r=r_0\).

MSC:

83C57 Black holes
81P55 Special bases (entangled, mutual unbiased, etc.)
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
94A55 Shift register sequences and sequences over finite alphabets in information and communication theory
83E05 Geometrodynamics and the holographic principle

References:

[1] Painlevé, P., C. R. Acad. Sci. (Paris), 173, 677 (1921) · JFM 48.0997.03
[2] Gullstrand, A., Arkiv. Mat. Astron. Fys., 16, 1-15 (1922) · JFM 48.1037.03
[3] Baines, Joshua; Berry, Thomas; Simpson, Alex; Visser, Matt, Gen. Relativity Gravitation, 54, 79 (2022) · Zbl 1510.83022
[4] Rudeep Gaur, Matt Visser, Cosmology in Painleve-Gullstrand coordinates, arXiv:2207.08375. · Zbl 1511.83026
[5] Minamitsuji, M.; De Felice, A.; Mukohyama, S.; Oliosi, M., Phys. Rev. D, 105, Article 123026 pp. (2022)
[6] Volovik, G. E., JETP, 135, 388-408 (2022)
[7] R.A. Hennigar, Kam.To.Billy. Chan, L. Newhook, I. Booth, The interior MOTSs of spherically symmetric black holes, arXiv:2111.09373.
[8] Volovik, G. E., Pis’ma ZhETF. Pis’ma ZhETF, JETP Lett., 69, 705-713 (1999), arXiv:gr-qc/9901077
[9] Parikh, M. K.; Wilczek, F., Phys. Rev. Lett., 85, 5042 (2000) · Zbl 1369.83053
[10] Faraoni, Valerio; Vachon, Genevieve, Eur. Phys. J. C, 80, 771 (2020)
[11] Volovik, G. E., Found. Phys., 33, 349-368 (2003), (devoted to the honour of Jacob Bekenstein); arXiv:gr-qc/0301043
[12] Unruh, W. G., Phys. Rev. Lett., 46, 1351-1353 (1981)
[13] Visser, M., Classical Quantum Gravity, 15, 1767-1791 (1998) · Zbl 0947.83029
[14] Volovik, G. E., The Universe in a Helium Droplet (2003), Clarendon Press: Clarendon Press Oxford · Zbl 1140.83412
[15] Volovik, G. E., Pis’ma ZhETF. Pis’ma ZhETF, JETP Lett., 104, 645-648 (2016), arXiv:1610.00521
[16] Kedem, Y.; Bergholtz, E. J.; Wilczek, F., Phys. Rev. Res., 2, Article 043285 pp. (2020), arXiv:2001.02625
[17] Bousso, R.; Hawking, S. W., Phys. Rev. D, 54, 6312 (1996)
[18] Bousso, R.; Hawking, S. W., Phys. Rev. D, 57, 2436 (1998)
[19] Shankaranarayanan, S., Phys. Rev. D, 67, Article 084026 pp. (2003)
[20] Arnowitt, R.; Deser, S.; Misner, C. W., Gen. Relativity Gravitation, 40, 1997-2027 (2008) · Zbl 1152.83320
[21] Matt. Visser, Null affine parameter in spacetimes conformal to spacetimes exhibiting a timelike conformal Killing vector, arXiv:2211.07835.
[22] Visser, M., Internat. J. Modern Phys. D, 14, 2051-2068 (2005), arXiv:gr-qc/0309072
[23] Volovik, G. E., Pis’ma ZhETF. Pis’ma ZhETF, JETP Lett., 90, 1-4 (2009), gr-qc
[24] Baryshev, Yu. V.; Chernin, A. D.; Teerikorpi, P., Astron. Astrophys., 378, 729-734 (2001)
[25] Martel, K.; Poisson, E., Amer. J. Phys., 69, 476-480 (2001)
[26] Faraoni, V.; Gunzig, E., Int. J. Theor. Phys., 38, 217 (1999), astro-ph/9910176 · Zbl 0937.83040
[27] K. Bhattacharya, Bi Ranjan Majhi, Scalar-tensor gravity from thermodynamic and fluid-gravity perspective, arXiv:2209.07050. · Zbl 1515.83203
[28] Barcelo, C.; Carballo-Rubio, R.; Garay, L. J., Internat. J. Modern Phys. D, 23, Article 1442022 pp. (2014)
[29] Barcelo, C.; Carballo-Rubio, R.; Garay, L. J., Classical Quantum Gravity, 34, Article 105007 pp. (2017) · Zbl 1369.83023
[30] Martin-Dussaud, P.; Rovelli, C., Classical Quantum Gravity, 36, Article 245002 pp. (2019) · Zbl 1478.83167
[31] Rovelli, C., Physics, 11, 127 (2018)
[32] Achour, J. B.; Brahma, S.; Uzan, J. P.; Bouncing compact objects. Part, I., J. Cosmol. Astropart. Phys., 03, 041 (2020) · Zbl 1490.85002
[33] Achour, J. B.; Uzan, J. P., Phys. Rev. D, 102, Article 124041 pp. (2020), arXiv:2001.06153
[34] Achour, J. B.; Brahma, S.; Mukohyama, S.; Uzan, J. P., J. Cosmol. Astropart. Phys., 09, 020 (2020), arXiv:2004.12977
[35] Bodendorfer, N.; Mele, F. M.; Münch, J., Classical Quantum Gravity, 38, Article 095002 pp. (2021), arXiv:1912.00774
[36] D’Ambrosio, F.; Christodoulou, M.; Martin-Dussaud, P.; Rovelli, C.; Soltani, F., Phys. Rev. D, 103, Article 106014 pp. (2021)
[37] Banihashemi, B.; Jacobson, T., J. High Energy Phys., 07, 042 (2022), arXiv:2204.05324
[38] B. Banihashemi, T. Jacobson, A. Svesko, M. Visser, The minus sign in the first law of de Sitter horizons, arXiv:2208.11706.
[39] Bunch, T. S.; Davies, P., Proc. R. Soc. London A, 360, 117-134 (1978)
[40] Greene, B. R.; Parikh, M. K.; van der Schaar, J. P., J. High Energy Phys., 04, 057 (2006)
[41] Baldovin, M.; Iubini, S.; Livi, R.; Vulpiani, A., Phys. Rep., 923, 1-50 (2021) · Zbl 1512.82019
[42] Klinkhamer, F. R.; Volovik, G. E., Phys. Rev. D, 105, Article 084066 pp. (2022), arXiv:2111.07962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.