×

Scalar-tensor gravity from thermodynamic and fluid-gravity perspective. (English) Zbl 1515.83203

Summary: Out of several possible extensions of general relativity, the scalar-tensor theory is the most popular for several reasons. Since the quantum description of gravity is yet to be formulated properly, the understanding of a gravitational theory remains incomplete until the study of thermodynamic and fluid-gravity aspects, which provides an alternative viewpoint to understand the gravitational theory. In this review, we study these features (thermodynamics and the fluid gravity analogy) in a rigorous and yet in a concise manner for the scalar-tensor gravity, which has been revealed in our recent works. In addition, the issue of conformally connected frames (i.e. whether the two frames, which are conformally related are physically equivalent) has been explored in an explicit manner at the action level as well as from the viewpoint of thermodynamics and fluid-gravity correspondence.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
80A10 Classical and relativistic thermodynamics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
81T32 Matrix models and tensor models for quantum field theory

References:

[1] Dyson, FW; Eddington, AS; Davidson, C., A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of may 29, 1919, Phil. Trans. Roy. Soc. Lond. A, 220, 291-333 (1920) · doi:10.1098/rsta.1920.0009
[2] Will, CM, The confrontation between general relativity and experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[3] Abbott, BP, [LIGO Scientific and Virgo], Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[4] Callan, CG Jr; Martinec, EJ; Perry, MJ; Friedan, D., Strings in background fields, Nucl. Phys. B, 262, 593 (1985) · doi:10.1016/0550-3213(85)90506-1
[5] Esposito-Farese, G.: Scalar tensor theories and cosmology and tests of a quintessence Gauss-Bonnet coupling. arXiv:gr-qc/0306018
[6] Elizalde, E.; Nojiri, S.; Odintsov, SD, Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.043539
[7] Saridakis, EN; Tsoukalas, M., Cosmology in new gravitational scalar-tensor theories, Phys. Rev. D, 93, 12 (2016) · doi:10.1103/PhysRevD.93.124032
[8] Crisostomi, M.; Koyama, K.; Tasinato, G., Extended scalar-tensor theories of gravity, JCAP, 1604, 4, 044 (2016) · doi:10.1088/1475-7516/2016/04/044
[9] Langlois, D., Saito, R., Yamauchi, D., Noui, K.: Scalar-tensor theories and modified gravity in the wake of GW170817. arXiv:1711.07403 [gr-qc]
[10] Faraoni, V.; Gunzig, E., Einstein frame or Jordan frame?, Int. J. Theor. Phys., 38, 217 (1999) · Zbl 0937.83040 · doi:10.1023/A:1026645510351
[11] Macias, A.; Garcia, A., Jordan frame or Einstein frame?, Gen. Relativ. Gravit., 33, 889 (2001) · Zbl 1169.83312 · doi:10.1023/A:1010212025682
[12] Faraoni, V.; Gunzig, E.; Nardone, P., Conformal transformations in classical gravitational theories and in cosmology, Fund. Cosmic Phys., 20, 121 (1999)
[13] Faraoni, V., Black hole entropy in scalar-tensor and f(R) gravity: an overview, Entropy, 12, 1246 (2010) · Zbl 1229.83048 · doi:10.3390/e12051246
[14] Faraoni, V.; Nadeau, S., The (pseudo)issue of the conformal frame revisited, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.023501
[15] Saltas, ID; Hindmarsh, M., The dynamical equivalence of modified gravity revisited, Class. Quant. Grav., 28 (2011) · Zbl 1208.83095 · doi:10.1088/0264-9381/28/3/035002
[16] Capozziello, S.; Martin-Moruno, P.; Rubano, C., Physical non-equivalence of the Jordan and Einstein frames, Phys. Lett. B, 689, 117 (2010) · doi:10.1016/j.physletb.2010.04.058
[17] Padilla, A.; Sivanesan, V., Boundary terms and junction conditions for generalized scalar-tensor theories, JHEP, 1208, 122 (2012) · Zbl 1397.83107
[18] Koga, JI; Maeda, KI, Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.064020
[19] Jacobson, T.; Kang, G., Conformal invariance of black hole temperature, Class. Quant. Grav., 10, L201 (1993) · Zbl 0794.53056 · doi:10.1088/0264-9381/10/11/002
[20] Kang, G., On black hole area in Brans-Dicke theory, Phys. Rev. D, 54, 7483 (1996) · doi:10.1103/PhysRevD.54.7483
[21] Deser, S.; Tekin, B., Conformal Properties of Charges in Scalar-Tensor Gravities, Class. Quant. Grav., 23, 7479-7482 (2006) · Zbl 1117.83092 · doi:10.1088/0264-9381/23/24/018
[22] Dehghani, MH; Pakravan, J.; Hendi, SH, Thermodynamics of charged rotating black branes in Brans-Dicke theory with quadratic scalar field potential, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.104014
[23] Sheykhi, A.; Yazdanpanah, MM, Thermodynamics of charged Brans-Dicke AdS black holes, Phys. Lett. B, 679, 311 (2009) · doi:10.1016/j.physletb.2009.07.056
[24] Steinwachs, CF; Kamenshchik, AY, One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: calculation in the Jordan frame. I. The main results, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.024026
[25] Kamenshchik, AY; Steinwachs, CF, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D, 91, 8 (2015) · doi:10.1103/PhysRevD.91.084033
[26] Banerjee, N.; Majumder, B., A question mark on the equivalence of Einstein and Jordan frames, Phys. Lett. B, 754, 129 (2016) · Zbl 1366.83072 · doi:10.1016/j.physletb.2016.01.022
[27] Pandey, S., Banerjee, N.: Equivalence of Jordan and Einstein frames at the quantum level. arXiv:1610.00584 [gr-qc]
[28] Ruf, MS; Steinwachs, CF, Quantum equivalence of \(f(R)\) gravity and scalar-tensor theories, Phys. Rev. D, 97, 4 (2018) · doi:10.1103/PhysRevD.97.044050
[29] Karam, A.; Pappas, T.; Tamvakis, K., Frame-dependence of higher-order inflationary observables in scalar-tensor theories, Phys. Rev. D, 96, 6 (2017) · doi:10.1103/PhysRevD.96.064036
[30] Bahamonde, S.; Odintsov, SD; Oikonomou, VK; Tretyakov, PV, Deceleration versus acceleration universe in different frames of \(F(R)\) gravity, Phys. Lett. B, 766, 225 (2017) · Zbl 1397.83094 · doi:10.1016/j.physletb.2017.01.012
[31] Karam, A.; Lykkas, A.; Tamvakis, K., Frame-invariant approach to higher-dimensional scalar-tensor gravity, Phys. Rev. D, 97, 12 (2018) · doi:10.1103/PhysRevD.97.124036
[32] Bhattacharya, K.; Majhi, BR, Fresh look at the scalar-tensor theory of gravity in Jordan and Einstein frames from undiscussed standpoints, Phys. Rev. D, 95, 6 (2017) · doi:10.1103/PhysRevD.95.064026
[33] Bhattacharya, K.; Das, A.; Majhi, BR, Noether and Abbott-Deser-Tekin conserved quantities in scalar-tensor theory of gravity both in Jordan and Einstein frames, Phys. Rev. D, 97, 12 (2018) · doi:10.1103/PhysRevD.97.124013
[34] Bhattacharya, K.; Majhi, BR; Singleton, D., Fluid-gravity correspondence in the scalar-tensor theory of gravity: (in)equivalence of Einstein and Jordan frames, JHEP, 07, 018 (2020) · Zbl 1451.83064 · doi:10.1007/JHEP07(2020)018
[35] Bhattacharya, K.: Thermodynamic aspects and phase transition of black holes. http://gyan.iitg.ernet.in/bitstream/handle/123456789/1740/TH-2294_156121009.pdf?sequence=2 &isAllowed=y
[36] Dey, S.; Bhattacharya, K.; Majhi, BR, Thermodynamic structure of a generic null surface and the zeroth law in scalar-tensor theory, Phys. Rev. D, 104, 12, 12 (2021) · doi:10.1103/PhysRevD.104.124038
[37] Padmanabhan, T., Gravity and the thermodynamics of horizons, Phys. Rept., 406, 49-125 (2005) · doi:10.1016/j.physrep.2004.10.003
[38] Padmanabhan, T., Holographic gravity and the surface term in the Einstein-Hilbert action, Braz. J. Phys., 35, 362-372 (2005) · doi:10.1590/S0103-97332005000200023
[39] Padmanabhan, T., The Holography of gravity encoded in a relation between entropy, horizon area and action for gravity, Gen. Relativ. Gravit, 34, 2029-2035 (2002) · Zbl 1015.83009 · doi:10.1023/A:1021171015146
[40] Padmanabhan, T., Is gravity an intrinsically quantum phenomenon? Dynamics of gravity from the entropy of space-time and the principle of equivalence, Mod. Phys. Lett. A, 17, 1147-1158 (2002) · Zbl 1083.83519 · doi:10.1142/S0217732302007260
[41] Padmanabhan, T., Gravity: a new holographic perspective, Int. J. Mod. Phys. D, 15, 1659-1676 (2006) · Zbl 1110.83305 · doi:10.1142/S0218271806009029
[42] Mukhopadhyay, A.; Padmanabhan, T., Holography of gravitational action functionals, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.124023
[43] Kolekar, S.; Kothawala, D.; Padmanabhan, T., Two aspects of black hole entropy in Lanczos-Lovelock models of gravity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.064031
[44] Kolekar, S.; Padmanabhan, T., Holography in action, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.024036
[45] Nordström, G., Phys. Zeit., 13, 1126 (1912) · JFM 43.0906.03
[46] Nordström, G., Ann. d. Phys., 40, 856 (1913) · JFM 44.0772.01 · doi:10.1002/andp.19133450503
[47] Nordström, G., Ann. d. Phys., 42, 533 (1913) · JFM 44.0890.02 · doi:10.1002/andp.19133471303
[48] Kaluza, T.: “Zum Unitätsproblem der Physik,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 966-972 (1921) · JFM 48.1032.03
[49] Klein, O., Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys., 37, 895-906 (1926) · JFM 52.0970.09 · doi:10.1007/BF01397481
[50] Dirac, PAM, New basis for cosmology, Proc. Roy. Soc. Lond. A, 165, 199 (1938) · JFM 64.1379.01 · doi:10.1098/rspa.1938.0053
[51] Brans, C.; Dicke, RH, Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[52] Quiros, I., Selected topics in scalar-tensor theories and beyond, Int. J. Mod. Phys. D, 28, 7, 1930012 (2019) · Zbl 1425.83001 · doi:10.1142/S021827181930012X
[53] Nordtvedt, K. Jr, PostNewtonian metric for a general class of scalar tensor gravitational theories and observational consequences, Astrophys. J., 161, 1059-1067 (1970) · doi:10.1086/150607
[54] Billyard, A.; Coley, A.; Ibanez, J., On the asymptotic behavior of cosmological models in scalar tensor theories of gravity, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.023507
[55] Barrow, JD; Parsons, P., The Behavior of cosmological models with varying G, Phys. Rev. D, 55, 1906-1936 (1997) · doi:10.1103/PhysRevD.55.1906
[56] Mimoso, JP; Wands, D., Anisotropic scalar - tensor cosmologies, Phys. Rev. D, 52, 5612-5627 (1995) · doi:10.1103/PhysRevD.52.5612
[57] Barrow, JD; Mimoso, JP, Perfect fluid scalar-tensor cosmologies, Phys. Rev. D, 50, 3746-3754 (1994) · doi:10.1103/PhysRevD.50.3746
[58] Banerjee, N.; Sen, S., Does Brans-Dicke theory always yield general relativity in the infinite omega limit?, Phys. Rev. D, 56, 1334-1337 (1997) · doi:10.1103/PhysRevD.56.1334
[59] Faraoni, V., Illusions of general relativity in Brans-Dicke gravity, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.084021
[60] Matsuda, T., On the gravitational collapse in Brans-Dicke theory of gravity, Prog. Theor. Phys., 47, 738-740 (1972) · doi:10.1143/PTP.47.738
[61] Romero, C.; Barros, A., Brans-Dicke cosmology and the cosmological constant: the spectrum of vacuum solutions, Astrophys. Space Sci., 192, 263-274 (1992) · doi:10.1007/BF00684484
[62] Romero, C.; Barros, A., Does Brans-Dicke theory of gravity go over to the general relativity when omega—\(>\) infinity?, Phys. Lett. A, 173, 243-246 (1993) · doi:10.1016/0375-9601(93)90271-Z
[63] Romero, C.; Barros, A., Brans-Dicke vacuum solutions and the cosmological constant: a qualitative analysis, Gen. Relativ. Gravit, 25, 491-502 (1993) · doi:10.1007/BF00756968
[64] Paiva, FM; Reboucas, MJ; MacCallum, MAH, On limits of space-times: a coordinate—free approach, Class. Quant. Grav., 10, 1165-1178 (1993) · Zbl 0781.53071 · doi:10.1088/0264-9381/10/6/013
[65] Paiva, FM; Romero, C., On the limits of Brans-Dicke space-times: a coordinate—free approach, Gen. Relativ. Gravit, 25, 1305-1317 (1993) · doi:10.1007/BF00759035
[66] Scheel, MA; Shapiro, SL; Teukolsky, SA, Collapse to black holes in Brans-Dicke theory. 2. Comparison with general relativity, Phys. Rev. D, 51, 4236-4249 (1995) · doi:10.1103/PhysRevD.51.4236
[67] Anchordoqui, LA; Torres, DF; Trobo, ML; Perez Bergliaffa, SE, Evolving wormhole geometries, Phys. Rev. D, 57, 829-833 (1998) · doi:10.1103/PhysRevD.57.829
[68] Pal, S., Quantized Brans-Dicke theory: phase transition, strong coupling limit, and general relativity, Phys. Rev. D, 94, 8 (2016) · doi:10.1103/PhysRevD.94.084023
[69] Bertotti, B.; Iess, L.; Tortora, P., A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374-376 (2003) · doi:10.1038/nature01997
[70] Bettoni, D.; Ezquiaga, JM; Hinterbichler, K.; Zumalacárregui, M., Speed of gravitational waves and the fate of scalar-tensor gravity, Phys. Rev. D, 95, 8 (2017) · doi:10.1103/PhysRevD.95.084029
[71] Abbott, BP, Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett., 848, 2, L12 (2017) · doi:10.3847/2041-8213/aa91c9
[72] Baker, T.; Bellini, E.; Ferreira, PG; Lagos, M.; Noller, J.; Sawicki, I., Strong constraints on cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119, 25 (2017) · doi:10.1103/PhysRevLett.119.251301
[73] Sakstein, J.; Jain, B., Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories, Phys. Rev. Lett., 119, 25 (2017) · doi:10.1103/PhysRevLett.119.251303
[74] Creminelli, P.; Vernizzi, F., Dark energy after GW170817 and GRB170817A, Phys. Rev. Lett., 119, 25 (2017) · doi:10.1103/PhysRevLett.119.251302
[75] Ruffini, R.; Wheeler, JA, Introducing the black hole, Phys. Today, 24, 12, 30 (1971) · doi:10.1063/1.3022513
[76] Bizon, P., Gravitating solitons and hairy black holes, Acta Phys. Polon. B, 25, 877-898 (1994) · Zbl 0966.83526
[77] Bekenstein, J.D.: Black hole hair: 25-years after. arXiv:gr-qc/9605059 [gr-qc]
[78] Volkov, MS; Gal’tsov, DV, Gravitating nonAbelian solitons and black holes with Yang-Mills fields, Phys. Rept., 319, 1-83 (1999) · doi:10.1016/S0370-1573(99)00010-1
[79] Bekenstein, JD, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett., 28, 452-455 (1972) · doi:10.1103/PhysRevLett.28.452
[80] Bekenstein, JD, Nonexistence of baryon number for static black holes, Phys. Rev. D, 5, 1239-1246 (1972) · doi:10.1103/PhysRevD.5.1239
[81] Bekenstein, JD, Nonexistence of baryon number for black holes. ii, Phys. Rev. D, 5, 2403-2412 (1972) · doi:10.1103/PhysRevD.5.2403
[82] Herdeiro, CAR; Radu, E., Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D, 24, 9, 1542014 (2015) · Zbl 1339.83008 · doi:10.1142/S0218271815420146
[83] Isi, M.; Giesler, M.; Farr, WM; Scheel, MA; Teukolsky, SA, Testing the no-hair theorem with GW150914, Phys. Rev. Lett., 123, 11 (2019) · doi:10.1103/PhysRevLett.123.111102
[84] Hong, JP; Suzuki, M.; Yamada, M., Spherically symmetric scalar hair for charged black holes, Phys. Rev. Lett., 125, 11 (2020) · doi:10.1103/PhysRevLett.125.111104
[85] Sotiriou, TP; Zhou, SY, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.251102
[86] Sotiriou, TP; Zhou, SY, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124063
[87] Khodadi, M.; Allahyari, A.; Vagnozzi, S.; Mota, DF, Black holes with scalar hair in light of the event horizon telescope, JCAP, 09, 026 (2020) · Zbl 1493.83024 · doi:10.1088/1475-7516/2020/09/026
[88] Damour, T.; Esposito-Farese, G., Nonperturbative strong field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett., 70, 2220-2223 (1993) · doi:10.1103/PhysRevLett.70.2220
[89] Damour, T.; Esposito-Farese, G., Tensor-scalar gravity and binary pulsar experiments, Phys. Rev. D, 54, 1474-1491 (1996) · doi:10.1103/PhysRevD.54.1474
[90] Mendes, RFP; Ortiz, N., Highly compact neutron stars in scalar-tensor theories of gravity: spontaneous scalarization versus gravitational collapse, Phys. Rev. D, 93, 12 (2016) · doi:10.1103/PhysRevD.93.124035
[91] Savaş Arapoğlu, A.; Yavuz Ekşi, K.; Emrah Yükselci, A., Neutron star structure in the presence of nonminimally coupled scalar fields, Phys. Rev. D, 99, 6 (2019) · doi:10.1103/PhysRevD.99.064055
[92] Freire, PCC; Wex, N.; Esposito-Farese, G.; Verbiest, JPW; Bailes, M.; Jacoby, BA; Kramer, M.; Stairs, IH; Antoniadis, J.; Janssen, GH, The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity, Mon. Not. Roy. Astron. Soc., 423, 3328 (2012) · doi:10.1111/j.1365-2966.2012.21253.x
[93] Esposito-Farese, G., Tests of scalar-tensor gravity, AIP Conf. Proc., 736, 1, 35-52 (2004) · doi:10.1063/1.1835173
[94] Ramazanoğlu, FM; Pretorius, F., Spontaneous scalarization with massive fields, Phys. Rev. D, 93, 6 (2016) · doi:10.1103/PhysRevD.93.064005
[95] Yazadjiev, SS; Doneva, DD; Popchev, D., Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field, Phys. Rev. D, 93, 8 (2016) · doi:10.1103/PhysRevD.93.084038
[96] Liu, T.; Zhao, W.; Wang, Y., Gravitational waveforms from the quasicircular inspiral of compact binaries in massive Brans-Dicke theory, Phys. Rev. D, 102, 12 (2020) · doi:10.1103/PhysRevD.102.124035
[97] Xu, R.; Gao, Y.; Shao, L., Strong-field effects in massive scalar-tensor gravity for slowly spinning neutron stars and application to X-ray pulsar pulse profiles, Phys. Rev. D, 102, 6 (2020) · doi:10.1103/PhysRevD.102.064057
[98] Salopek, DS; Bond, JR; Bardeen, JM, Phys. Rev. D, 40, 1753 (1989) · doi:10.1103/PhysRevD.40.1753
[99] Sennett, N.; Shao, L.; Steinhoff, J., Effective action model of dynamically scalarizing binary neutron stars, Phys. Rev. D, 96, 8 (2017) · doi:10.1103/PhysRevD.96.084019
[100] Barausse, E.; Palenzuela, C.; Ponce, M.; Lehner, L., Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.081506
[101] Zhang, X.; Yu, J.; Liu, T.; Zhao, W.; Wang, A., Testing Brans-Dicke gravity using the Einstein telescope, Phys. Rev. D, 95, 12 (2017) · doi:10.1103/PhysRevD.95.124008
[102] Abbott, BP, [LIGO Scientific and Virgo], Tests of general relativity with GW170817”, Phys. Rev. Lett., 123, 1 (2019) · doi:10.1103/PhysRevLett.123.011102
[103] Shao, L.; Sennett, N.; Buonanno, A.; Kramer, M.; Wex, N., Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors, Phys. Rev. X, 7, 4 (2017)
[104] Anderson, D.; Freire, P.; Yunes, N., Binary pulsar constraints on massless scalar-tensor theories using Bayesian statistics, Class. Quant. Grav., 36, 22 (2019) · doi:10.1088/1361-6382/ab3a1c
[105] Guo, M.; Zhao, J.; Shao, L., Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves, Phys. Rev. D, 104, 10 (2021) · doi:10.1103/PhysRevD.104.104065
[106] Anderson, D.; Yunes, N.; Barausse, E., Effect of cosmological evolution on solar system constraints and on the scalarization of neutron stars in massless scalar-tensor theories, Phys. Rev. D, 94, 10 (2016) · doi:10.1103/PhysRevD.94.104064
[107] Bousso, R., The holographic principle, Rev. Mod. Phys., 74, 825-874 (2002) · Zbl 1205.83025 · doi:10.1103/RevModPhys.74.825
[108] Padmanabhan, T., Gravitation: Foundations and Frontiers (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1187.83002 · doi:10.1017/CBO9780511807787
[109] Charap, JM; Nelson, JE, Surface integrals and the gravitational action, J. Phys. A, 16, 1661 (1983) · Zbl 0527.53018 · doi:10.1088/0305-4470/16/8/013
[110] Parattu, K.; Chakraborty, S.; Majhi, BR; Padmanabhan, T., A boundary term for the gravitational action with null boundaries, Gen. Relativ. Gravit., 48, 7, 94 (2016) · Zbl 1386.83018 · doi:10.1007/s10714-016-2093-7
[111] Chakraborty, S., Boundary terms of the Einstein-Hilbert action, Fundam. Theor. Phys., 187, 43-59 (2017) · doi:10.1007/978-3-319-51700-1_5
[112] Parattu, K.; Chakraborty, S.; Padmanabhan, T., Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term, Eur. Phys. J. C, 76, 3, 129 (2016) · doi:10.1140/epjc/s10052-016-3979-y
[113] Jubb, I.; Samuel, J.; Sorkin, R.; Surya, S., Boundary and corner terms in the action for general relativity, Class. Quant. Grav., 34, 6 (2017) · Zbl 1368.83014 · doi:10.1088/1361-6382/aa6014
[114] Chakraborty, S., Parattu, K.: Null boundary terms for Lanczos-Lovelock gravity. Gen. Relativ. Gravit. 51(2), 23 (2019) [erratum: Gen. Rel. Grav. 51(3), 47 (2019)[arXiv:1806.08823 [gr-qc]] · Zbl 1414.83051
[115] Wald, RM, Black hole entropy is the Noether charge, Phys. Rev. D, 48, 8, R3427 (1993) · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[116] Abbott, LF; Deser, S., Stability of gravity with a cosmological constant, Nucl. Phys. B, 195, 76 (1982) · Zbl 0900.53033 · doi:10.1016/0550-3213(82)90049-9
[117] Deser, S.; Tekin, B., Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett., 89 (2002) · Zbl 1267.83086 · doi:10.1103/PhysRevLett.89.101101
[118] Deser, S.; Tekin, B., Energy in generic higher curvature gravity theories, Phys. Rev. D, 67 (2003) · Zbl 1045.83029 · doi:10.1103/PhysRevD.67.084009
[119] Deser, S.; Tekin, B., Energy in topologically massive gravity, Class. Quant. Grav., 20, L259 (2003) · Zbl 1045.83029 · doi:10.1088/0264-9381/20/21/L01
[120] Bouchareb, A.; Clement, G., Black hole mass and angular momentum in topologically massive gravity, Class. Quant. Grav., 24, 5581-5594 (2007) · Zbl 1148.83320 · doi:10.1088/0264-9381/24/22/018
[121] Bhattacharya, K.; Majhi, BR, Abbott-Deser-Tekin like conserved quantities in Lanczos-Lovelock gravity: beyond Killing diffeomorphisms, Class. Quant. Grav., 36 (2019) · Zbl 1476.83123 · doi:10.1088/1361-6382/ab04e2
[122] Eling, C.; Guedens, R.; Jacobson, T., Non-equilibrium thermodynamics of spacetime, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.121301
[123] Elizalde, E.; Silva, PJ, F(R) gravity equation of state, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.061501
[124] Chirco, G.; Liberati, S., Non-equilibrium thermodynamics of spacetime: the role of gravitational dissipation, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.024016
[125] Padmanabhan, T., Classical and quantum thermodynamics of horizons in spherically symmetric space-times, Class. Quant. Grav., 19, 5387-5408 (2002) · Zbl 1011.83018 · doi:10.1088/0264-9381/19/21/306
[126] Bamba, K.; Geng, CQ; Nojiri, S.; Odintsov, SD, Equivalence of modified gravity equation to the Clausius relation, EPL, 89, 5, 50003 (2010) · doi:10.1209/0295-5075/89/50003
[127] Jacobson, T.; Kang, G.; Myers, RC, On black hole entropy, Phys. Rev. D, 49, 6587-6598 (1994) · doi:10.1103/PhysRevD.49.6587
[128] Iyer, V.; Wald, RM, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846-864 (1994) · doi:10.1103/PhysRevD.50.846
[129] Visser, M., Dirty black holes: entropy as a surface term, Phys. Rev. D, 48, 5697-5705 (1993) · doi:10.1103/PhysRevD.48.5697
[130] Hawking, SW, Black holes in general relativity, Commun. Math. Phys., 25, 152 (1972) · doi:10.1007/BF01877517
[131] Wald, RM, General Relativity (1984), Chicago: The University of Chicago Press, Chicago · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[132] Gourgoulhon, E.; Jaramillo, JL, A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rept., 423, 159 (2006) · doi:10.1016/j.physrep.2005.10.005
[133] Chakraborty, S.; Parattu, K.; Padmanabhan, T., Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity, JHEP, 10, 097 (2015) · Zbl 1388.83407 · doi:10.1007/JHEP10(2015)097
[134] Kothawala, D.; Sarkar, S.; Padmanabhan, T., Einstein’s equations as a thermodynamic identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric horizons, Phys. Lett. B, 652, 338-342 (2007) · Zbl 1248.83024 · doi:10.1016/j.physletb.2007.07.021
[135] Chakraborty, S., Lanczos-Lovelock gravity from a thermodynamic perspective, JHEP, 08, 029 (2015) · Zbl 1388.83573 · doi:10.1007/JHEP08(2015)029
[136] Paranjape, A.; Sarkar, S.; Padmanabhan, T., Thermodynamic route to field equations in Lancos-Lovelock gravity, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.104015
[137] Kothawala, D.; Padmanabhan, T., Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.104020
[138] Kothawala, D., The thermodynamic structure of Einstein tensor, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.024026
[139] Dey, S.; Majhi, BR, Covariant approach to the thermodynamic structure of a generic null surface, Phys. Rev. D, 102, 12 (2020) · doi:10.1103/PhysRevD.102.124044
[140] Hayward, SA, Unified first law of black hole dynamics and relativistic thermodynamics, Class. Quant. Grav., 15, 3147-3162 (1998) · Zbl 0942.83040 · doi:10.1088/0264-9381/15/10/017
[141] Prain, A.; Vitagliano, V.; Faraoni, V.; Lapierre-Léonard, M., Hawking-Hayward quasi-local energy under conformal transformations, Class. Quant. Grav., 33, 14 (2016) · Zbl 1346.83046 · doi:10.1088/0264-9381/33/14/145008
[142] Damour, T.: Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, p. 6. Université Paris, Thèse de doctorat dÉtat (1979)
[143] Damour, T.: Surface effects in black hole physics. In: Proceedings of the Second Marcel Grossmann Meeting on General Relativity”, Ed. R. Ruffini, North Holland, p. 587 (1982)
[144] Hartle, JB, Tidal friction in slowly rotating black holes, Phys. Rev. D, 8, 1010-1024 (1973) · doi:10.1103/PhysRevD.8.1010
[145] Hartle, JB, Tidal shapes and shifts on rotating black holes, Phys. Rev. D, 9, 2749-2759 (1974) · doi:10.1103/PhysRevD.9.2749
[146] Hawking, SW; Hartle, JB, Energy and angular momentum flow into a black hole, Commun. Math. Phys., 27, 283-290 (1972) · doi:10.1007/BF01645515
[147] Padmanabhan, T., Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.044048
[148] Price, RH; Thorne, KS, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D, 33, 915 (1986) · doi:10.1103/PhysRevD.33.915
[149] Brustein, R.; Medved, AJM, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.021901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.