×

Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws. (English) Zbl 1518.65017

Summary: In this paper, we analyse the rate of convergence of a system of \(N\) interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by P. Kolli and M. Shkolnikov [Ann. Probab. 46, No. 2, 1042–1069 (2018; Zbl 1430.60057)] to check trajectorial propagation of chaos with optimal rate \({N^{-1/2}}\) to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by M. Bossy [Math. Comput. 73, No. 246, 777–812 (2004; Zbl 1041.65015)] to check the convergence in \({L^1}(\mathbb{R})\) with rate \(\mathcal{O}(\frac{1}{\sqrt{N}}+h)\) of the empirical cumulative distribution function of the Euler discretization with step \(h\) of the particle system to the solution of a one-dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as \(\mathcal{O}(\frac{1}{N}+h)\). We provide numerical results which confirm our theoretical estimates.

MSC:

65C35 Stochastic particle methods
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
65C30 Numerical solutions to stochastic differential and integral equations

References:

[1] BANNER, A. D., FERNHOLZ, R. and KARATZAS, I. (2005). Atlas models of equity markets. Ann. Appl. Probab. 15 2296-2330. · Zbl 1099.91056 · doi:10.1214/105051605000000449
[2] BENCHEIKH, O. and JOURDAIN, B. (2019). Bias behavior and antithetic sampling in mean-field particle approximations of SDEs nonlinear in the sense of McKean. In CEMRACS 2017—Numerical Methods for Stochastic Models: Control, Uncertainty Quantification, Mean-Field. ESAIM Proc. Surveys 65 219-235. EDP Sci., Les Ulis. · Zbl 07079337 · doi:10.1051/proc/201965219
[3] BENCHEIKH, O. and JOURDAIN, B. (2022). Approximation rate in Wasserstein distance of probability measures on the real line by deterministic empirical measures. J. Approx. Theory 274 Paper No. 105684. · Zbl 1481.60007 · doi:10.1016/j.jat.2021.105684
[4] Bobkov, S. and Ledoux, M. (2019). One-dimensional empirical measures, order statistics, and Kantorovich transport distances. Mem. Amer. Math. Soc. 261 v+126. · Zbl 1454.60007 · doi:10.1090/memo/1259
[5] BOSSY, M. (2004). Optimal rate of convergence of a stochastic particle method to solutions of 1D viscous scalar conservation laws. Math. Comp. 73 777-812. · Zbl 1041.65015 · doi:10.1090/S0025-5718-03-01551-5
[6] Bossy, M. and Talay, D. (1996). Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation. Ann. Appl. Probab. 6 818-861. · Zbl 0860.60038 · doi:10.1214/aoap/1034968229
[7] CARDALIAGUET, P. (2013). Notes on Mean-Field Games (from P.-L. Lions lectures at Collège de France). Available at https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf.
[8] CHASSAGNEUX, J.-F., SZPRUCH, L. and TSE, A. (2022). Weak quantitative propagation of chaos via differential calculus on the space of measures. Ann. Appl. Probab. 32 1929-1969. · Zbl 1497.60074 · doi:10.1214/21-aap1725
[9] CHAUDRU DE RAYNAL, P.-E. and FRIKHA, N. (2021). From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDEs. J. Math. Pures Appl. (9) 156 1-124. · Zbl 1481.60105 · doi:10.1016/j.matpur.2021.10.010
[10] FERNHOLZ, E. R. (2002). Stochastic Portfolio Theory. Applications of Mathematics (New York) 48. Springer, New York. · Zbl 1049.91067 · doi:10.1007/978-1-4757-3699-1
[11] Jabir, J.-F. (2019). Rate of propagation of chaos for diffusive stochastic particle systems via Girsanov transformation. Preprint. Available at arXiv:1907.09096.
[12] JOURDAIN, B. (2000). Diffusion processes associated with nonlinear evolution equations for signed measures. Methodol. Comput. Appl. Probab. 2 69-91. · doi:10.1023/A:1010059302049
[13] JOURDAIN, B. (2000). Probabilistic approximation for a porous medium equation. Stochastic Process. Appl. 89 81-99. · Zbl 1054.35067 · doi:10.1016/S0304-4149(00)00014-4
[14] JOURDAIN, B. (2002). Probabilistic characteristics method for a one-dimensional inviscid scalar conservation law. Ann. Appl. Probab. 12 334-360. · Zbl 1013.60022 · doi:10.1214/aoap/1015961167
[15] JOURDAIN, B. and MALRIEU, F. (2008). Propagation of chaos and Poincaré inequalities for a system of particles interacting through their CDF. Ann. Appl. Probab. 18 1706-1736. · Zbl 1185.65013 · doi:10.1214/07-AAP513
[16] JOURDAIN, B., MÉLÉARD, S. and WOYCZYNSKI, W. A. (2005). Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws. Bernoulli 11 689-714. · Zbl 1122.60063 · doi:10.3150/bj/1126126765
[17] JOURDAIN, B. and REYGNER, J. (2013). Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation. Stoch. Partial Differ. Equ. Anal. Comput. 1 455-506. · Zbl 1279.65012 · doi:10.1007/s40072-013-0014-2
[18] JOURDAIN, B. and REYGNER, J. (2014). The small noise limit of order-based diffusion processes. Electron. J. Probab. 19 no. 29. · Zbl 1294.60084 · doi:10.1214/EJP.v19-2906
[19] JOURDAIN, B. and REYGNER, J. (2016). Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete Contin. Dyn. Syst. 36 4963-4996. · Zbl 1416.65393 · doi:10.3934/dcds.2016015
[20] KOLLI, P. and SHKOLNIKOV, M. (2018). SPDE limit of the global fluctuations in rank-based models. Ann. Probab. 46 1042-1069. · Zbl 1430.60057 · doi:10.1214/17-AOP1200
[21] Mischler, S., Mouhot, C. and Wennberg, B. (2015). A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Related Fields 161 1-59. · Zbl 1333.60174 · doi:10.1007/s00440-013-0542-8
[22] SARANTSEV, A. (2015). Triple and simultaneous collisions of competing Brownian particles. Electron. J. Probab. 20 no. 29. · Zbl 1321.60213 · doi:10.1214/EJP.v20-3279
[23] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. · Zbl 0732.60114 · doi:10.1007/BFb0085169
[24] TANG, W. and TSAI, L.-C. (2018). Optimal surviving strategy for drifted Brownian motions with absorption. Ann. Probab. 46 1597-1650. · Zbl 1429.60075 · doi:10.1214/17-AOP1211
[25] Veraar, M. (2012). The stochastic Fubini theorem revisited. Stochastics 84 543-551. · Zbl 1255.60086 · doi:10.1080/17442508.2011.618883
[26] VERETENNIKOV, A. J. (1981). Strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR, Sb. 39 387-403 · Zbl 0462.60063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.