×

Unique ergodicity for foliations on compact Kähler surfaces. (English) Zbl 1518.37061

Let \(\mathcal{F}\) be a (possibly singular) holomorphic foliation by Riemann surfaces on a compact Kähler surface \(X\).
In order to study the dynamical properties of foliations, the authors develop the formalism of directed \(dd^c\)-closed currents. The pioneering work of L. Garnett [J. Funct. Anal. 51, 285–311 (1983; Zbl 0524.58026)] and D. Sullivan [Invent. Math., 36, 225–255 (1976; Zbl 0335.57015)] developed the ideas of harmonic measures and foliated cycles for nonsingular foliations.
In the present paper, given a singular holomorphic foliaton \(\mathcal{F}\), a positive \(dd^c\)-closed \((1,1)\)-current \(T\) is said to be directed by \(\mathcal{F}\) if \(T \wedge \Omega=0\), for every local holomorphic 1-form \(\Omega\) defining \(\mathcal{F}\) on \(X\).
This novel technique allows the interplay between cohomological intersection and geometric intersection. The present article studies the cohomological properties of tangent currents.
Assume that \(\mathcal{F}\) is generic in the sense that all the singularities are hyperbolic, and moreover it admits no directed positive closed \((1,1)\)-current. Then there exists a unique (up to a multiplicative constant) positive \(dd^c\)-closed \((1,1)\)-current directed by \(\mathcal{F}\). This is a very strong ergodic property of \(\mathcal{F}\) showing that all leaves of \(\mathcal{F}\) have the same asymptotic behavior.
The proof uses an extension of the theory of densities to a class of non-\(dd^c\)-closed currents. This is independent of foliation theory and represents a new tool in pluripotential theory. A complete description of the cone of directed positive \(dd^c\)-closed currents is also given when \(\mathcal{F}\) admits directed positive closed currents.
This work is a new step in the study of Kähler surfaces, already initiated by the authors in previous publications. For previous results about foliations on the projective plane \(X=\mathbb{P}^2\) with an invariant line see the papers of the authors [Invent. Math. 211, No. 1, 1–38 (2018; Zbl 1395.37030); J. Algebr. Geom. 27, No. 3, 497–551 (2018; Zbl 1393.32017)].
Let us remark that the whole paper is based on the technical mastery and deep ideas of N. Sibony [Duke Math. J. 52, 157–197 (1985; Zbl 0578.32023)].

MSC:

37F75 Dynamical aspects of holomorphic foliations and vector fields
37C86 Foliations generated by dynamical systems
32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions
32S65 Singularities of holomorphic vector fields and foliations
32U15 General pluripotential theory
32U40 Currents

References:

[1] L. ALESSANDRINI and G. BASSANELLI, Plurisubharmonic currents and their extension across analytic subsets, Forum Math. 5 (1993), no. 6, 577-602. · Zbl 0784.32014 · doi:10.1515/form.1993.5.577
[2] G. BASSANELLI, A cut-off theorem for plurisubharmonic currents, Forum Math. 6 (1994), no. 5, 567-595. · Zbl 0808.32010 · doi:10.1515/form.1994.6.567
[3] B. BERNDTSSON and N. SIBONY, \[ The \overline{\partial } \]-equation on a positive current, Invent. Math. 147 (2002), no. 2, 371-428. · Zbl 1031.32005 · doi:10.1007/s002220100178
[4] A. BLANCHARD, Sur les variétés analytiques complexes, Ann. Sci. Éc. Norm. Supér. (3) 73 (1956), 157-202. · Zbl 0073.37503
[5] M. BRUNELLA, Inexistence of invariant measures for generic rational differential equations in the complex domain, Bol. Soc. Mat. Mex. (3) 12 (2006), no. 1, 43-49. · Zbl 1146.32014
[6] D. BURNS and N. SIBONY, Limit currents and value distribution of holomorphic maps, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 145-176. · Zbl 1252.32002
[7] J.-P. DEMAILLY, Complex analytic and differential geometry, preprint, 2012, http://www-fourier.ujf-grenoble.fr/ demailly/books.html.
[8] J.-P. DEMAILLY and M. PAUN, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247-1274. · Zbl 1064.32019 · doi:10.4007/annals.2004.159.1247
[9] T.-C. DINH, V.-A. NGUYÊN, and N. SIBONY, Heat equation and ergodic theorems for Riemann surface laminations, Math. Ann. 354 (2012), no. 1, 331-376. · Zbl 1331.37064 · doi:10.1007/s00208-011-0730-8
[10] T.-C. DINH and N. SIBONY, Regularization of currents and entropy, Ann. Sci. Éc. Norm. Supér. (4) 37 (2004), no. 6, 959-971. · Zbl 1074.53058 · doi:10.1016/j.ansens.2004.09.002
[11] T.-C. DINH and N. SIBONY, Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3, 357-371. · Zbl 1128.32020 · doi:10.1007/s00229-007-0103-5
[12] T.-C. DINH and N. SIBONY, Density of positive closed currents, a theory of non-generic intersections, J. Algebraic Geom. 27 (2018), no. 3, 497-551. · Zbl 1393.32017 · doi:10.1090/jag/711
[13] T.-C. DINH and N. SIBONY, Unique ergodicity for foliations in \[{\mathbb{P}^2} \]with an invariant curve, Invent. Math. 211 (2018), no. 1, 1-38. · Zbl 1395.37030 · doi:10.1007/s00222-017-0744-2
[14] H. FEDERER, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969. · Zbl 0176.00801
[15] J. E. FORNÆSS and N. SIBONY, Oka’s inequality for currents and applications, Math. Ann. 301 (1995), no. 3, 399-419. · Zbl 0832.32010 · doi:10.1007/BF01446636
[16] J. E. FORNÆSS and N. SIBONY, Harmonic currents of finite energy and laminations, Geom. Funct. Anal. 15 (2005), no. 5, 962-1003. · Zbl 1115.32020 · doi:10.1007/s00039-005-0531-x
[17] J. E. FORNÆSS and N. SIBONY, Riemann surface laminations with singularities, J. Geom. Anal. 18 (2008), no. 2, 400-442. · Zbl 1159.32020 · doi:10.1007/s12220-008-9018-y
[18] J. E. FORNÆSS and N. SIBONY, Unique ergodicity of harmonic currents on singular foliations of \[{\mathbb{P}^2} \], Geom. Funct. Anal. 19 (2010), no. 5, 1334-1377. · Zbl 1204.32022 · doi:10.1007/s00039-009-0043-1
[19] J. E. FORNÆSS, N. SIBONY, and E. F. WOLD, Examples of minimal laminations and associated currents, Math. Z. 269 (2011), no. 1-2, 495-520. · Zbl 1233.32022 · doi:10.1007/s00209-010-0747-9
[20] L. GARNETT, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), no. 3, 285-311. · Zbl 0524.58026 · doi:10.1016/0022-1236(83)90015-0
[21] A. A. GLUTSYUK, Hyperbolicity of the leaves of a generic one-dimensional holomorphic foliation on a nonsingular projective algebraic variety (in Russian), Tr. Mat. Inst. Steklova 213 (1997), 90-111; English translation in Proc. Steklov Inst. Math. 1996, no. 2(213), 83-103. · Zbl 0883.57027
[22] Y. ILYASHENKO and S. YAKOVENKO, Lectures on Analytic Differential Equations, Grad. Stud. Math. 86, Amer. Math. Soc., Providence, 2008. · Zbl 1186.34001 · doi:10.1090/gsm/086
[23] J.-P. JOUANOLOU, Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), no. 3, 239-245. · Zbl 0354.34007 · doi:10.1007/BF01351428
[24] J.-P. JOUANOLOU, Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, Berlin, 1979. · Zbl 0477.58002
[25] L. KAUFMANN, Self-intersection of foliation cycles on complex manifolds, Internat. J. Math. 28 (2017), no. 8, art. ID 1750054. · Zbl 1379.37091 · doi:10.1142/S0129167X17500549
[26] A. LINS NETO, Uniformization and the Poincaré metric on the leaves of a foliation by curves, Bull. Braz. Math. Soc. (N.S.) 31 (2000), no. 3, 351-366. · Zbl 0987.37039 · doi:10.1007/BF01241634
[27] A. LINS NETO and M. G. SOARES, Algebraic solutions of one-dimensional foliations, J. Differential Geom. 43 (1996), no. 3, 652-673. · Zbl 0873.32031 · doi:10.4310/jdg/1214458327
[28] M. MCQUILLAN, Diophantine approximations and foliations, Publ. Math. Inst. Hautes Études Sci. 87 (1998), 121-174. · Zbl 1006.32020
[29] V.-A. NGUYÊN, Oseledec multiplicative ergodic theorem for laminations, Mem. Amer. Math. Soc. 246 (2017), no. 1164. · Zbl 1373.37129 · doi:10.1090/memo/1164
[30] V.-A. NGUYÊN, Directed harmonic currents near hyperbolic singularities, Ergodic Theory Dynam. Systems 38 (2018), no. 8, 3170-3187. · Zbl 1401.37056 · doi:10.1017/etds.2017.2
[31] V.-A. NGUYÊN, Singular holomorphic foliations by curves, I: Integrability of holonomy cocycle in dimension 2, Invent. Math. 212 (2018), no. 2, 531-618. · Zbl 1484.32037 · doi:10.1007/s00222-017-0772-y
[32] V.-A. NGUYÊN, Singular holomorphic foliations by curves, II: Negative Lyapunov exponent, preprint, arXiv:1812.10125v2 [math.CV].
[33] C. PÉREZ-GARRANDÉS, Ergodicity of laminations with singularities in Kähler surfaces, Math. Z. 275 (2013), no. 3-4, 1169-1179. · Zbl 1291.37087 · doi:10.1007/s00209-013-1175-4
[34] J. C. REBELO, On closed currents invariant by holomorphic foliations, I, Mosc. Math. J. 13 (2013), no. 1, 123-185. · Zbl 1304.37032 · doi:10.17323/1609-4514-2013-13-1-123-185
[35] A. A. SHCHERBAKOV, The dynamics of local groups of conformal mappings and the generic properties of differential equations on \[{\mathbb{C}^2} \](in Russian), Tr. Mat. Inst. Steklova 254 (2006), 111-129; English translation in Proc. Steklov Inst. Math. 2006, no. 3(254), 103-120. · Zbl 1351.37202 · doi:10.1134/s0081543806030047
[36] N. SIBONY, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), no. 1, 157-197. · Zbl 0578.32023 · doi:10.1215/S0012-7094-85-05210-X
[37] N. SIBONY and E. F. WOLD, Topology and complex structures of leaves of foliations by Riemann surfaces, J. Geom. Anal. 30 (2020), no. 3, 2593-2614. · Zbl 1452.32025 · doi:10.1007/s12220-017-9975-0
[38] Y. T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53-156. · Zbl 0289.32003 · doi:10.1007/BF01389965
[39] H. SKODA, Prolongement des courants, positifs, fermés de masse finie, Invent. Math. 66 (1982), no. 3, 361-376. · Zbl 0488.58002 · doi:10.1007/BF01389217
[40] C. D. SOGGE, Fourier Integrals in Classical Analysis, 2nd ed., Cambridge Tracts in Math. 210, Cambridge Univ. Press, Cambridge, 2017. · Zbl 1361.35005 · doi:10.1017/9781316341186
[41] D. SULLIVAN, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976), 225-255. · Zbl 0335.57015 · doi:10.1007/BF01390011
[42] M. E. TAYLOR, Partial Differential Equations, I: Basic theory, 2nd ed., Appl. Math. Sci. 115, Springer, New York, 2011. · Zbl 1206.35002 · doi:10.1007/978-1-4419-7055-8
[43] C. VOISIN, Hodge Theory and Complex Algebraic Geometry, I, reprint of the 2002 English edition, Cambridge Stud. Adv. Math. 76, Cambridge Univ. Press, Cambridge, 2007. · Zbl 1129.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.