×

Riemann surface laminations with singularities. (English) Zbl 1159.32020

The paper under review is a well written survey about the authors’ theory of harmonic currents for laminations by Riemann surfaces.
Roughly speaking, a Riemann surface lamination of a complex manifold is a continuous “foliation” by complex curves with parameter space which is just a topological space. Such a lamination might have singularities, which is usually the case in nature. In the first section, the authors present the very basic definitions of laminations by Riemann surfaces, of reduced singularities and separatrices and provide many examples with remarks and observations. Then, they discuss linearization and normal forms (topological, formal and holomorphic), stating results and, in some cases, providing sketches of the proofs.
In the next section, they define directed positive closed currents for laminations contained in compact Kähler manifolds and they discuss existence, uniqueness, and other properties and show, almost always with proofs, how to use such objects to study laminations of \(\mathbb P^2\).
Next, the authors discuss of singular laminations without positive closed currents. They start proving a sort of “Brody reparametrization lemma” for laminations. Then, they show that generically for laminations in \(\mathbb P^2\) without singularities there are no positive directed closed currents, except integration along algebraic leaves. They continue by studying the Poincaré metric of the leaves and its regularity with respect to transversal variation, ending the paragraph discussing universal coverings maps of leaves.
The final section is the core of the survey, devoted to harmonic currents. These are, roughly speaking, the analogs of invariant measures in discrete dynamical systems. After proving existence and a way to construct such currents, they prove a series of properties of harmonic currents.
Finally, the authors discuss the (still open) problem of existence of minimal exceptional sets for foliations in \(\mathbb P^2\), showing, among other things, that if a foliation admits a positive closed directed current, then it has no minimal exceptional sets.

MSC:

32S65 Singularities of holomorphic vector fields and foliations
32U40 Currents
30F15 Harmonic functions on Riemann surfaces
57R30 Foliations in differential topology; geometric theory
32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces

References:

[1] Arnold, V., Il’yashenko, Yu.: Ordinary Differential Equations. Encyclopedia of Math. Sciences, vol. 1, pp. 1–148. Springer, Berlin (1988)
[2] Atiyah, M.F.: Geometry of Yang-Mills Fields. Scuola Normale Superiore Pisa, Pisa (1979) · Zbl 0435.58001
[3] Baum, P.F., Bott, R.: On the zeros of meromorphic vector-fields. In: Essays on Topology and Related Topics (Mémoires dédies à Georges de Rham), pp. 29–47. Springer, New York (1970) · Zbl 0193.52201
[4] Berndtsson, B., Sibony, N.: The \(\overline{\partial}\) equation on a positive current. Invent. Math. 147, 371–428 (2002) · Zbl 1031.32005 · doi:10.1007/s002220100178
[5] Bonatti, C., Langevin, R., Moussu, R.: Feuilletages de \(\mathbb{P}\) n : de l’holonomie hyperbolique pour les minimaux exceptionnels. Publ. Math. IHES 75, 123–134 (1992) · Zbl 0782.32023
[6] Bonatti, C., Gomez-Mont, X.: Sur le comportement statistique des feuilles de certains feuilletages holomorphes. Monogr. Enseign. Math. 38, 15–41 (2001) · Zbl 1010.37025
[7] Brjuno, A.D.: A Local Method of non Linear Analysis for Differential Equations. Nauka, Moscow (1979)
[8] Brunella, M.: Birational Geometry of Foliations. Notas de Curso. Impa, Rio de Jeneiro (2000) · Zbl 1073.14022
[9] Brunella, M.: Inexistence of invariant measures for generic rational differential equations in the complex domain. Bol. Soc. Mex. 12, 43–49 (2006) · Zbl 1146.32014
[10] Brunella, M.: Mesures harmoniques conformes et feuilletages du plan projectif complexe. Preprint (2006) · Zbl 1138.37029
[11] Camacho, C., Lins Neto, A.: Geometric Theory of Foliations. Birkhauser, Boston (1985) · Zbl 0568.57002
[12] Camacho, C., Lins Neto, A., Sad, P.: Minimal sets of foliations on complex projective spaces. Publ. Math. IHES 68, 187–203 (1988) · Zbl 0682.57012
[13] Camacho, C., Lins Neto, A., Sad, P.: Foliations with algebraic limit sets. Ann. Math. 136, 429–446 (1992) · Zbl 0769.57017 · doi:10.2307/2946610
[14] Camacho, C., Sad, P.: Invariant varieties through singularities of holomorphic vector fields. Ann. Math. 115, 579–595 (1982) · Zbl 0503.32007 · doi:10.2307/2007013
[15] Candel, A.: Uniformization of surface laminations. Ann. Sci. Ec. Norm. Super. 26, 489–516 (1993) · Zbl 0785.57009
[16] Candel, A.: The harmonic measures of Lucy Garnett. Adv. Math. 176, 187–247 (2003) · Zbl 1031.58003 · doi:10.1016/S0001-8708(02)00036-1
[17] Candel, A., Gomez-Mont, X.: Uniformization of the leaves of a rational vector field. Ann. Inst. Fourier 45, 1123–1133 (1995) · Zbl 0832.32017
[18] Campillo, A., Carnicer, M.M., Garcia de la Fuente, J.: Invariant curves by vector fields on algebraic varieties. J. Lond. Math. Soc. 62, 56–70 (2000) · Zbl 1040.32027 · doi:10.1112/S0024610700008978
[19] Carnicer, M.M.: The Poincaré problem in the non dicritical case. Ann. Math. 140, 289–294 (1994) · Zbl 0821.32026 · doi:10.2307/2118601
[20] Cerveau, D., Mattei, J.-F.: Formes intégrables holomorphes singulières. Asterisque 97 (1982) · Zbl 0545.32006
[21] Chaperon, M.: \({\mathcal{C}}^{k}\) –conjugacy of holomorphic flows near a singularity. Inst. Hautes Etud. Sci., Publ. Math. 64, 143–183 (1986) · Zbl 0625.57011
[22] Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets. Cambridge University Press, Cambridge (1966) · Zbl 0149.03003
[23] Demailly, J.P.: Introduction à la théorie de Hodge. Panor. Synth. 3, 1–111 (1996)
[24] Demailly, J.P.: Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/\(\sim\)demailly/ · Zbl 1102.14300
[25] Deroin, B., Klepsyn, V.: Random conformal dynamical systems. Preprint (2006)
[26] Diederich, K., Fornæss, J.E.: Pseudoconvex domains with real-analytic boundary. Ann. Math. 107(2), 371–384 (1978) · Zbl 0378.32014 · doi:10.2307/1971120
[27] Dinh, T.-C., Sibony, N.: Pull-back of currents by holomorphic maps. Manuscr. Math. 123, 357–371 (2007) · Zbl 1128.32020 · doi:10.1007/s00229-007-0103-5
[28] Federer, H.: Geometric Measure Theory. Springer, Berlin (1969) · Zbl 0176.00801
[29] Fornæss, J.E., Wang, Y., Wold, E.F.: Laminated currents. Preprint (2007)
[30] Fornæss, J.E., Wang, Y., Wold, E.F.: Laminated harmonic currents. Preprint (2007)
[31] Fornæss, J.E., Sibony, N.: Oka’s inequality for currents and applications. Math. Ann. 301, 399–419 (1995) · Zbl 0832.32010 · doi:10.1007/BF01446636
[32] Fornæss, J.E., Sibony, N.: Harmonic currents of finite energy and laminations. GAFA 15, 962–1003 (2005) · Zbl 1115.32020 · doi:10.1007/s00039-005-0531-x
[33] Fornæss, J.E., Sibony, N.: Unique ergodicity of harmonic currents on singular foliations of \(\mathbb{P}\)2. Preprint (2006) · Zbl 1204.32022
[34] Frankel, S.: Harmonic analysis of surface group representation and Milnor type inequalities. Prepublication de l’Ecole Polytechnique no 1125 (1995)
[35] Garnett, L.: Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983) · Zbl 0524.58026 · doi:10.1016/0022-1236(83)90015-0
[36] Ghys, E.: Gauss Bonnet theorem for 2-dimensional foliations. J. Funct. Anal. 51, 285–311 (1983) · Zbl 0524.58026 · doi:10.1016/0022-1236(83)90015-0
[37] Ghys, E.: Laminations par surfaces de Riemann. Panor. Synth. 5, 49–95 (1999). Dynamique et Géométrie complexes (Lyon 1997)
[38] Ghys, E.: A propos d’un théorème de J.P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes. Rend. Circ. Mat. Palermo 49(2), 175–180 (2000) · Zbl 0953.32016 · doi:10.1007/BF02904228
[39] Gomez-Mont, X., Luengo, I.: Germs of holomorphic vector fields without separatrix. Invent. Math. 109, 211–219 (1992) · Zbl 0774.32019 · doi:10.1007/BF01232024
[40] Harvey, R.: Removable singularities for positive currents. Am. J. Math. 96, 67–78 (1974) · Zbl 0293.32015 · doi:10.2307/2373581
[41] Hille, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York (1976) · Zbl 0343.34007
[42] Hurder, S., Mitsumatsu, Y.: The intersection product of transverse invariant measures. Indiana Univ. Math. J. 40, 1169–1183 (1991) · Zbl 0769.57018 · doi:10.1512/iumj.1991.40.40051
[43] Il’yashenko, Yu.: Global and local aspects in the theory of complex differential equations. In: Proc. Int. Cong. Math. Helsinki. Acad. Scient. Fennica, vol. 2, pp. 821–826 (1978)
[44] Jouanolou, J.P.: Hypersurfaces solutions d’une equation de Pfaff. Math. Ann. 232, 239–245 (1978) · doi:10.1007/BF01351428
[45] Jouanolou, J.P.: Equations de Pfaff Algebriques. Lecture Notes in Math., vol. 708. Springer, Berlin (1979) · Zbl 0477.58002
[46] Lins Neto, A.: Some examples for the Poincaré and Painlevé problems. Ann. Sci. Ec. Norm. Super. 35, 231–266 (2002) · Zbl 1130.34301
[47] Lins Neto, A., Pereira, J.V.: The generic rank of the Baum-Bott map for foliations of the projective plane. Compos. Math. 142, 1549–1587 (2006) · Zbl 1109.37041 · doi:10.1112/S0010437X06002326
[48] Lins Neto, A., Soares, M.: Algebraic solutions of one dimensional foliations. J. Differ. Geom. 43, 652–673 (1996) · Zbl 0873.32031
[49] Loray, F., Rebelo, J.: Minimal rigid foliations by curves on \(\mathbb{P}\) n . J. Eur. Math. Soc. (JEMS) 5, 147–201 (2003) · Zbl 1021.37030 · doi:10.1007/s10097-002-0049-6
[50] Martinez, M.: Measures on hyperbolic surface laminations. Ergod. Theory Dyn. Syst. 26, 847–867 (2006) · Zbl 1107.37027 · doi:10.1017/S0143385706000058
[51] Mjuller, B.: The density of the solutions of a certain equation in \(\mathbb{P}\)2. Math. Sb. (N.S.) 98(140), 325–328 (1975). (Russian)
[52] Moussu, R., Pelletier, F.: Sur le theorème de Poincaré-Bendixon. Ann. Inst. Fourier 24, 131–148 (1974) · Zbl 0273.57008
[53] Nemirovski, S.: Stein domains with Levi flat boundaries on compact complex surfaces. Math. Notes 66, 522–525 (1999) · Zbl 1395.32014 · doi:10.1007/BF02679105
[54] Ohsawa, T.: On the Levi flats in complex tori of dimension 2. Preprint · Zbl 1141.32016
[55] Petrovskiĭ, I.G., Landis, E.M.: On the number of limit cycles of the equation dy/dx=P(x,y)/Q(x,y), where P and Q are polynomials of the second degree. In: American Mathematical Society Translations, Ser. 2, vol. 10, pp. 177–221. American Mathematical Society, Providence (1958) · Zbl 0080.07502
[56] Plante, J.: Foliations with measure preserving holonomy. Ann. Math. 102, 327–361 (1975) · Zbl 0314.57018 · doi:10.2307/1971034
[57] Royden, H.L.: The extension of regular holomorphic maps. Proc. Am. Math. Soc. 43, 306–310 (1974) · Zbl 0292.32019 · doi:10.1090/S0002-9939-1974-0335851-X
[58] Seidenberg, A.: Reduction of singularities of the differential equation Ady=Bdx. Am. J. Math. 90, 248–269 (1968) · Zbl 0159.33303 · doi:10.2307/2373435
[59] Siu, Y.T.: Analyticity of sets associated to Lelong numbers and extension of positive currents. Invent. Math. 27, 53–156 (1974) · Zbl 0289.32003 · doi:10.1007/BF01389965
[60] Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36, 225–255 (1976) · Zbl 0335.57015 · doi:10.1007/BF01390011
[61] Suzuki, M.: Sur les intégrales premières de certains feuilletages analytiques complexes. In: Fonctions de plusieurs variables complexes, III, Sém. François Norguet, 1975–1977 (French). Lecture Notes in Math., vol. 670, pp. 53–79. Springer, Berlin (1978)
[62] Verjovski, A.: A uniformization theorem for holomorphic foliations. Contemp. Math. 58, 233–253 (1987). The Lefschetz Centennial Conference
[63] Warwick, T.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2, 53–117 (2002) · Zbl 1047.37012
[64] Zakeri, S.: Dynamics of singular holomorphic foliations on the complex projective plane. Contemp. Math. 269, 179–233 (2001) · Zbl 1193.37066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.