×

The spectra of Cantor-type measures with consecutive digits. (English) Zbl 1518.28002

Summary: For integers \(p\), \(b \ge 2\), suppose that \(D=\left\{ 0, 1,\dots, b-1\right\}\) is a consecutive digit set. It’s noted that the Cantor measure \(\mu_{pb,D}\) is spectral with a spectrum \[ \Lambda \left(pb, pD\right) =\left\{ \sum^{finite}_{j=0} \left(pb\right)^j d_j:d_j\in pD \right\}. \] By building the connection with number theory, we aim to explore the conditions of the integer \(\tau\) under which the scaling set \(\tau \Lambda \left(pb, pD\right)\) is also the spectrum of \(\mu_{pb,D}\). If so, we call \(\tau\) complete. In particular, for prime numbers \(\tau\), \(\tau_1\), \(\tau_2,\dots, \tau_m\) and \(\tau_i > pb-1\), we investigate the sufficient conditions that the power of \(\tau\) coprime to pb is complete and the power of \(\tau_1 \tau_2 \cdot \cdot \cdot \tau_m\) is complete. Furthermore, when an integer \(\tau\) coprime to \(b\) is incomplete while every proper divisor of it is complete, we call \(\tau\) primitive. So we obtain some properties and a criteria for the primitive number.

MSC:

28A12 Contents, measures, outer measures, capacities
11A51 Factorization; primality
11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Ai, W.H.: Fractal Spectral Measures and the Analytic Arcs of Inner Functions, Hunan University, PhD dissertation (2021)
[2] Ai, WH, Number theory problems related to the spectrum of Cantor-type measures with consecutive digits, Bull. Aust. Math. Soc., 103, 1, 113-123 (2021) · Zbl 1456.28004 · doi:10.1017/S0004972720000507
[3] An, LX; He, XG, A class of spectral Moran measures, J. Funct. Anal., 266, 1, 343-354 (2014) · Zbl 1303.28009 · doi:10.1016/j.jfa.2013.08.031
[4] An, LX; He, XG; Lau, KS, Spectrality of a class of infinite convolutions, Adv. Math., 283, 362-376 (2015) · Zbl 1323.28007 · doi:10.1016/j.aim.2015.07.021
[5] Dai, XR, When does a Bernoulli convolution admit a spectrum?, Adv. Math., 231, 1681-1693 (2012) · Zbl 1266.42012 · doi:10.1016/j.aim.2012.06.026
[6] Dai, XR; He, XG; Lai, CK, Spectral property of Cantor measures with consecutive digits, Adv. Math., 242, 187-208 (2013) · Zbl 1277.28009 · doi:10.1016/j.aim.2013.04.016
[7] Dai, XR; He, XG; Lau, KS, On spectral N-Bernoulli measures, Adv. Math., 259, 511-531 (2014) · Zbl 1303.28011 · doi:10.1016/j.aim.2014.03.026
[8] Dutkay, DE; Kraus, I., Number theoretic considerations related to the scaling of spectra of Cantor-type measures, Anal. Math., 44, 3, 335-367 (2018) · Zbl 1424.11002 · doi:10.1007/s10476-018-0505-5
[9] Dutkay, DE; Haussermann, J., Number theory problems from the harmonic analysis of a fractal, J. Number Theory, 15, 7-26 (2016) · Zbl 1400.11006 · doi:10.1016/j.jnt.2015.07.009
[10] Dutkay, DE; Jorgensen, PET, Fourier duality for fractal measures with affine scales, Math. Comp., 81, 2253-2273 (2012) · Zbl 1277.47033 · doi:10.1090/S0025-5718-2012-02580-4
[11] Dutkay, DE; Jorgensen, PET, Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comp., 75, 1931-1970 (2006) · Zbl 1117.28008 · doi:10.1090/S0025-5718-06-01861-8
[12] Dutkay, D.; Jorgensen, P., Duality questions for operators, spectrum and measures, Acta Appl. Math., 108, 515-528 (2019) · Zbl 1229.28012 · doi:10.1007/s10440-008-9427-8
[13] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-121 (1974) · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[14] Hutchinson, JB, Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[15] Jones, GA, Elementary Number Theory (1998), London: Springer, London · Zbl 0891.11001 · doi:10.1007/978-1-4471-0613-5
[16] Jorgensen, PET, Pedersen, Steen: Dense analytic subspaces in fractal \(L_2\)-spaces, J. Anal. Math., 75, 185-228 (1998) · Zbl 0959.28008 · doi:10.1007/BF02788699
[17] Jorgensen, PET; Kornelson, KA; Shuman, KL, Scalar spectral measures associated with an operator-fractal, J. Math. Phys., 55, 2 (2014) · Zbl 1286.47017 · doi:10.1063/1.4863897
[18] Jorgensen, PET; Kornelson, KA; Shuman, KL, Scaling by 5 on a Cantor measure, Rocky Mountain J. Math., 44, 1881-1901 (2014) · Zbl 1329.42006 · doi:10.1216/RMJ-2014-44-6-1881
[19] Kigami, J., Local Nash inequality and inhomogeneity of heat kernels, Proc. Lond. Math. Soc., 89, 525-544 (2004) · Zbl 1060.60076 · doi:10.1112/S0024611504014807
[20] Kigami, J.; Strichartz, R.; Walker, K., Constructing a Laplacian on the diamond fractal, Exp. Math., 10, 437-448 (2001) · Zbl 0999.31007 · doi:10.1080/10586458.2001.10504461
[21] Laba, I.; Wang, Y., On spectral Cantor measures, J. Funct. Anal., 193, 409-420 (2002) · Zbl 1016.28009 · doi:10.1006/jfan.2001.3941
[22] Landau, H., Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117, 37-52 (1967) · Zbl 0154.15301 · doi:10.1007/BF02395039
[23] Liu, JC; Luo, JJ, Spectral property of self-affine measure on \(\mathbb{R}^n \), J. Funct. Anal., 272, 599-612 (2017) · Zbl 1351.28017 · doi:10.1016/j.jfa.2016.10.011
[24] Strichartz, R., Convergence of mock Fourier series, J. Anal. Math., 99, 333-353 (2006) · Zbl 1134.42308 · doi:10.1007/BF02789451
[25] Wang, Z.M., Dong, X.H., Ai, W.H.: Scaling of spectra of self-similar measures on \(\mathbb{R} \). Math. Nachr. 292(10), 2300-2307 (2019) · Zbl 1431.28016
[26] Wu, Z.Y., Zhu, M.: Scaling of spectra of self-similar measures with consecutive digits. J. Math. Anal. Appl. 459(1), 307-319 (2018) · Zbl 1377.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.