×

Fourier duality for fractal measures with affine scales. (English) Zbl 1277.47033

Authors’ abstract: For a family of fractal measures, we find an explicit Fourier duality. The measures in the pair have compact support in \( \mathbb{R}^d\), and they both have the same matrix scaling; but the two use different translation vectors, one by a subset \( B\) in \( \mathbb{R}^d\), and the other by a related subset \( L\). Among other things, we show that there is then a pair of infinite discrete sets \( \Gamma (L)\) and \( \Gamma (B)\) in \( \mathbb{R}^d\) such that the \( \Gamma (L)\)-Fourier exponentials are orthogonal in \( L^2(\mu _B)\), and the \( \Gamma (B)\)-Fourier exponentials are orthogonal in \( L^2(\mu _L)\). These sets of orthogonal “frequencies” are typically lacunary, and they will be obtained by scaling in the large. The nature of our duality is explored below both in higher dimensions and for examples on the real line. Our duality pairs do not always yield orthonormal Fourier bases in the respective \( L^2(\mu )\)-Hilbert spaces, but depending on the geometry of certain finite orbits, we show that they do in some cases. We further show that there are new and surprising scaling symmetries of relevance for the ergodic theory of these affine fractal measures.

MSC:

47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
42B05 Fourier series and coefficients in several variables
28A35 Measures and integrals in product spaces
26A33 Fractional derivatives and integrals
62L20 Stochastic approximation

References:

[1] Ola Bratteli and Palle E. T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no. 663, x+89. , https://doi.org/10.1090/memo/0663 Ola Bratteli and Palle E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale \?, Integral Equations Operator Theory 28 (1997), no. 4, 382 – 443. · Zbl 0897.46054 · doi:10.1007/BF01309155
[2] R. Craigen, W. H. Holzmann, and H. Kharaghani, On the asymptotic existence of complex Hadamard matrices, J. Combin. Des. 5 (1997), no. 5, 319 – 327. , https://doi.org/10.1002/(SICI)1520-6610(1997)5:53.3.CO;2-W · Zbl 0913.05030
[3] Wojciech Czaja, Gitta Kutyniok, and Darrin Speegle, Beurling dimension of Gabor pseudoframes for affine subspaces, J. Fourier Anal. Appl. 14 (2008), no. 4, 514 – 537. · Zbl 1268.42055 · doi:10.1007/s00041-008-9026-0
[4] Qi-Rong Deng, Reverse iterated function system and dimension of discrete fractals, Bull. Aust. Math. Soc. 79 (2009), no. 1, 37 – 47. · Zbl 1168.28002 · doi:10.1017/S000497270800097X
[5] Remco Duits, Luc Florack, Jan de Graaf, and Bart ter Haar Romeny, On the axioms of scale space theory, J. Math. Imaging Vision 20 (2004), no. 3, 267 – 298. · doi:10.1023/B:JMIV.0000024043.96722.aa
[6] Dorin Ervin Dutkay, Deguang Han, and Qiyu Sun, On the spectra of a Cantor measure, Adv. Math. 221 (2009), no. 1, 251 – 276. · Zbl 1173.28003 · doi:10.1016/j.aim.2008.12.007
[7] Dorin Ervin Dutkay, Deguang Han, Qiyu Sun, and Eric Weber, On the Beurling dimension of exponential frames, Adv. Math. 226 (2011), no. 1, 285 – 297. · Zbl 1209.28010 · doi:10.1016/j.aim.2010.06.017
[8] P. Diţă, On the parametrization of complex Hadamard matrices, Romanian J. Phys. 48 (2003), no. 5-6, 619 – 626 (2004). · Zbl 1273.81056
[9] P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A 37 (2004), no. 20, 5355 – 5374. · Zbl 1062.81018 · doi:10.1088/0305-4470/37/20/008
[10] Dorin E. Dutkay and Palle E. T. Jorgensen, Wavelets on fractals, Rev. Mat. Iberoam. 22 (2006), no. 1, 131 – 180. · Zbl 1104.42021 · doi:10.4171/RMI/452
[11] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comp. 75 (2006), no. 256, 1931 – 1970. · Zbl 1117.28008
[12] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. 256 (2007), no. 4, 801 – 823. · Zbl 1129.28006 · doi:10.1007/s00209-007-0104-9
[13] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Fourier frequencies in affine iterated function systems, J. Funct. Anal. 247 (2007), no. 1, 110 – 137. · Zbl 1128.42013 · doi:10.1016/j.jfa.2007.03.002
[14] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Harmonic analysis and dynamics for affine iterated function systems, Houston J. Math. 33 (2007), no. 3, 877 – 905. · Zbl 1214.42009
[15] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Martingales, endomorphisms, and covariant systems of operators in Hilbert space, J. Operator Theory 58 (2007), no. 2, 269 – 310. · Zbl 1134.47305
[16] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Fourier series on fractals: a parallel with wavelet theory, Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., Providence, RI, 2008, pp. 75 – 101. · Zbl 1256.42048 · doi:10.1090/conm/464/09077
[17] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Quasiperiodic spectra and orthogonality for iterated function system measures, Math. Z. 261 (2009), no. 2, 373 – 397. · Zbl 1163.65101 · doi:10.1007/s00209-008-0329-2
[18] Remco Duits and Markus van Almsick, The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group, Quart. Appl. Math. 66 (2008), no. 1, 27 – 67. · Zbl 1153.60040
[19] Kevin Ford, Florian Luca, and Igor E. Shparlinski, On the largest prime factor of the Mersenne numbers, Bull. Aust. Math. Soc. 79 (2009), no. 3, 455 – 463. · Zbl 1178.11061 · doi:10.1017/S0004972709000033
[20] Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101 – 121. · Zbl 0279.47014
[21] Daniele Guido, Tommaso Isola, and Michel L. Lapidus, A trace on fractal graphs and the Ihara zeta function, Trans. Amer. Math. Soc. 361 (2009), no. 6, 3041 – 3070. · Zbl 1216.11081
[22] Tian-You Hu and Ka-Sing Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 (2008), no. 2, 554 – 567. · Zbl 1268.42044 · doi:10.1016/j.aim.2008.05.004
[23] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713 – 747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[24] Alex Iosevich, Nets Katz, and Steen Pedersen, Fourier bases and a distance problem of Erdős, Math. Res. Lett. 6 (1999), no. 2, 251 – 255. · Zbl 1007.42006 · doi:10.4310/MRL.1999.v6.n2.a13
[25] Alex Iosevich, Nets Katz, and Terence Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559 – 569. · Zbl 1087.42018 · doi:10.4310/MRL.2003.v10.n5.a1
[26] Marius Ionescu and Yasuo Watatani, \?*-algebras associated with Mauldin-Williams graphs, Canad. Math. Bull. 51 (2008), no. 4, 545 – 560. · Zbl 1207.46056 · doi:10.4153/CMB-2008-054-0
[27] Palle E. T. Jørgensen, A generalization to locally compact abelian groups of a spectral problem for commuting partial differential operators, J. Pure Appl. Algebra 25 (1982), no. 3, 297 – 301. · Zbl 0495.22001 · doi:10.1016/0022-4049(82)90084-6
[28] Palle E. T. Jørgensen, Spectral theory of finite volume domains in \?\(^{n}\), Adv. in Math. 44 (1982), no. 2, 105 – 120. · Zbl 0488.22009 · doi:10.1016/0001-8708(82)90001-9
[29] Palle E. T. Jorgensen and Steen Pedersen, An algebraic spectral problem for \?²(\Omega ),\Omega \subset \?\(^{n}\), C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 7, 495 – 498 (English, with French summary). · Zbl 0718.46011
[30] Palle E. T. Jorgensen and Steen Pedersen, Dense analytic subspaces in fractal \?²-spaces, J. Anal. Math. 75 (1998), 185 – 228. · Zbl 0959.28008 · doi:10.1007/BF02788699
[31] Palle E. T. Jorgensen and Steen Pedersen, Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl. 5 (1999), no. 4, 285 – 302. · Zbl 1050.42016 · doi:10.1007/BF01259371
[32] Izabella Łaba and Yang Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409 – 420. · Zbl 1016.28009 · doi:10.1006/jfan.2001.3941
[33] Leo Murata and Carl Pomerance, On the largest prime factor of a Mersenne number, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 209 – 218. · Zbl 1077.11003
[34] David Mumford, Pattern theory: a unifying perspective, First European Congress of Mathematics, Vol. I (Paris, 1992) Progr. Math., vol. 119, Birkhäuser, Basel, 1994, pp. 187 – 224. · Zbl 0939.68820
[35] A. M. Odlyzko, Nonnegative digit sets in positional number systems, Proc. London Math. Soc. (3) 37 (1978), no. 2, 213 – 229. · Zbl 0391.10012 · doi:10.1112/plms/s3-37.2.213
[36] Steen Pedersen, On the dual spectral set conjecture, Current trends in operator theory and its applications, Oper. Theory Adv. Appl., vol. 149, Birkhäuser, Basel, 2004, pp. 487 – 491. · Zbl 1071.42021
[37] Robert S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), no. 10, 1199 – 1208. · Zbl 1194.58022
[38] Robert S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209 – 238. · Zbl 0976.42020 · doi:10.1007/BF02788990
[39] Robert S. Strichartz and Yang Wang, Geometry of self-affine tiles. I, Indiana Univ. Math. J. 48 (1999), no. 1, 1 – 23. · Zbl 0938.52017 · doi:10.1512/iumj.1999.48.1616
[40] Adam Skalski and Joachim Zacharias, Noncommutative topological entropy of endomorphisms of Cuntz algebras, Lett. Math. Phys. 86 (2008), no. 2-3, 115 – 134. · Zbl 1182.46055 · doi:10.1007/s11005-008-0279-y
[41] Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251 – 258. · Zbl 1092.42014 · doi:10.4310/MRL.2004.v11.n2.a8
[42] D. V. Vasil\(^{\prime}\)ev, The Lucas-Lehmer test for Mersenne numbers, Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk 2 (2006), 113 – 115, 129 (Russian, with English and Russian summaries).
[43] Mingyuan Xia, Yingbao Chen, and Hong Qin, Some results for the existence of regular complex Hadamard matrices, Util. Math. 68 (2005), 103 – 108. · Zbl 1100.05015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.