×

Adaptive robust maneuvering control for nonlinear systems via dynamic surface technique. (English) Zbl 1517.93081

MSC:

93D21 Adaptive or robust stabilization
93C10 Nonlinear systems in control theory
93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
Full Text: DOI

References:

[1] Young, KD; Ozguner, U., Variable Structure Systems, Sliding Mode and Nonlinear Control (1999), Berlin: Springer, Berlin · Zbl 0922.00035 · doi:10.1007/BFb0109967
[2] Ortega, R.; Loría, A.; Nicklasson, PJ; Sira-Ramirez, H., Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (1998), Berlin: Springer, Berlin · doi:10.1007/978-1-4471-3603-3
[3] Krstić, M.; Kokotović, PV; Kanellakopoulos, I., Nonlinear and Adaptive Control Design (1995), New York: Wiley, New York
[4] Ioannou, PA; Sun, J., Robust Adaptive Control (1996), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0839.93002
[5] Kwan, C.; Lewis, FL, Robust backstepping control of nonlinear systems using neural networks, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 30, 6, 753-766 (2000) · doi:10.1109/3468.895898
[6] Mizumoto, I. Michino, R. Tao, Y. C. and Iwai, Z.: Robust adaptive tracking control for time-varying nonlinear systems with higher order relative degree. In: Proceedings of IEEE International Conference on Decision and Control. 4, 4303-4308 (2003)
[7] Madani, T. and Benallegue, A.: Control of a quadrotor mini-helicopter via full state backstepping technique. In: Proceedings of IEEE conference on decision and control. 1515-1520 (2006)
[8] Stotsky, A. Hedrick, J. K. and Yip, P. P.: The use of sliding modes to simplify the backstepping control method. In: Proceedings of American control conference. 1703-1708 (1997) · Zbl 0905.93010
[9] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, Int. J. Control, 76, 9-10, 924-941 (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[10] Yip, P. P. Hedrick, J. K., Swaroop, D.: The use of linear filtering to simplify integrator backstepping control of nonlinear systems. In: Proceedings of IEEE international workshop on variable structure systems. 211-215 (1996)
[11] Shin, DH; Kim, Y., Reconfigurable flight control system design using adaptive neural networks, IEEE Trans. Control Syst. Technol., 12, 1, 87-100 (2004) · doi:10.1109/TCST.2003.821957
[12] Koo, TJ, Stable model reference adaptive fuzzy control of a class of nonlinear systems, IEEE Trans. Fuzzy Syst., 9, 4, 624-636 (2001) · doi:10.1109/91.940973
[13] Swaroop, D.; Hedrick, JK; Yip, PP; Gerdes, JC, Dynamic surface control for a class of nonlinear systems, IEEE Trans. Autom. Control, 45, 10, 1893-1899 (2000) · Zbl 0991.93041 · doi:10.1109/TAC.2000.880994
[14] Du, JL; Hu, X.; Krstić, XM; Sun, YQ, Robust dynamic positioning of ships with disturbances under input saturation, Automatica, 73, 207-214 (2016) · Zbl 1371.93061 · doi:10.1016/j.automatica.2016.06.020
[15] Wu, Z. H. Lu, J. C. and Shi, J. P.: Adaptive neural dynamic surface control of morphing aircraft with input constraints. In: Proceedings of Chinese control and decision conference. 6-12 (2017)
[16] Liu, C.; Chen, CLP; Zou, ZJ; Li, TS, Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation, Neurocomputing, 267, 6, 466-474 (2017) · doi:10.1016/j.neucom.2017.06.042
[17] Farrell, JA; Polycarpou, MM; Sharma, M.; Dong, WJ, Command filtered backstepping, IEEE Trans. Autom. Control, 54, 6, 1391-1395 (2009) · Zbl 1367.93382 · doi:10.1109/TAC.2009.2015562
[18] Dong, WJ; Farrell, JA; Polycarpou, MM; Djapic, V.; Sharma, M., Command filtered adaptive backstepping, IEEE Trans. Control Syst. Technol., 20, 3, 566-580 (2012) · doi:10.1109/TCST.2011.2121907
[19] Chen, M.; Yu, J., Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer, Chin. J. Aeronaut., 28, 3, 853-864 (2015) · doi:10.1016/j.cja.2015.04.020
[20] Rashad, R.; Aboudonia, A.; El-Badawy, A., A novel disturbance observer-based backstepping controller with command filtered compensation for a MIMO system, J. Franklin Inst., 353, 16, 4039-4061 (2016) · Zbl 1347.93065 · doi:10.1016/j.jfranklin.2016.07.017
[21] Aboudonia, A.; El-Badawy, A.; Rashad, R., Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach, Nonlinear Dyn., 90, 1, 581-597 (2017) · Zbl 1390.93557 · doi:10.1007/s11071-017-3683-y
[22] Hou, ZG; Zou, AM; Cheng, L.; Tan, M., Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach, IEEE Trans. Control Syst. Technol., 17, 4, 803-815 (2009) · doi:10.1109/TCST.2009.2012516
[23] Lee, H.; Tomizuka, M., Robust adaptive control using a universal approximator for SISO nonlinear systems, IEEE Trans. Fuzzy Syst., 8, 1, 95-106 (2000) · doi:10.1109/91.824777
[24] Xu, B.; Shi, ZK; Yang, CG; Sun, FC, Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form, IEEE Trans. Cybern., 44, 12, 2626-2634 (2014) · doi:10.1109/TCYB.2014.2311824
[25] Yu, ZX; Li, SG, Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions, Neurocomputing, 129, 10, 540-547 (2014) · doi:10.1016/j.neucom.2013.09.005
[26] Peng, ZH; Wang, D.; Wang, J., Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw. Learn. Syst., 28, 9, 2156-2167 (2016) · doi:10.1109/TNNLS.2016.2577342
[27] Homayoun, B.; Arefi, MM; Vafamand, N., Robust adaptive backstepping tracking control of stochastic nonlinear systems with unknown input saturation: a command filter approach, Int. J. Robust Nonlinear Control, 30, 8, 3296-3313 (2020) · Zbl 1466.93035 · doi:10.1002/rnc.4933
[28] Skjetne, R.; Fossen, TI; Kokotović, PV, Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory, Automatica, 41, 2, 289-298 (2005) · Zbl 1096.93026 · doi:10.1016/j.automatica.2004.10.006
[29] Skjetne, R.; Fossen, TI; Kokotović, PV, Robust output maneuvering for a class of nonlinear systems, Automatica, 40, 3, 373-383 (2004) · Zbl 1042.93024 · doi:10.1016/j.automatica.2003.10.010
[30] Ma, J. Ren, J. S. Bai, W. W. and Li, H. Y.: Backstepping sliding mode maneuvering control for a class of surface ships. In: Proceedings of IEEE data driven control and learning systems conference. 935-940 (2020)
[31] Skjetne, R. Ihle, I. A. F. and Fossen, T. I.: Formation control by synchronizing multiple maneuvering systems. In: IFAC Proceedings Volumes. 280-285 (2003)
[32] Khalil, HK, Nonlinear Systems (2002), Prentice Hall: Englewood Cliffs, Prentice Hall · Zbl 1003.34002
[33] Khalil, H.; Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE Trans. Autom. Control, 38, 9, 1412-1415 (1993) · Zbl 0787.93079 · doi:10.1109/9.237658
[34] Xie, XJ; Li, ZJ; Zhang, KM, Semi-global output feedback control for nonlinear systems with uncertain time-delay and output function, Int. J. Robust Nonlinear Control, 27, 15, 2549-2566 (2016) · Zbl 1373.93263 · doi:10.1002/rnc.3696
[35] Ge, SS; Hang, CC; Lee, TH; Zhang, T., Stable Adaptive Neural Network Control (2002), Boston: Kluwer, Boston · Zbl 1001.93002 · doi:10.1007/978-1-4757-6577-9
[36] Ge, SS; Wang, C., Adaptive neural control of uncertain MIMO nonlinear systems, IEEE Trans. Neural Netw., 15, 3, 674-692 (2004) · doi:10.1109/TNN.2004.826130
[37] Benabdallah, A.; Ellouze, I.; Hammami, M., Practical stability of nonlinear time-varying cascade systems, J. Dynam. Control Syst., 15, 1, 45-62 (2009) · Zbl 1203.93160 · doi:10.1007/s10883-008-9057-5
[38] Viet, TD; Doan, PT; Hung, N.; Kim, HK; Kim, SB, Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction, J. Mech. Sci. Technol., 26, 7, 2197-2211 (2012) · doi:10.1007/s12206-012-0541-1
[39] Ren, C.; Yi, S.; Ma, S., Passivity-based control of an omnidirectional mobile robot, Robot. Biomim., 3, 1, 1-9 (2016) · doi:10.1186/s40638-016-0037-z
[40] Tsai, C. C. Kuo, C. Z. Chan, C. C. and Wang, X. C.: Global path planning and navigation of an omnidirectional mecanum mobile robot. In: Proceedings of 2013 CACS international automatic control conference. 85-90 (2013)
[41] Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Berlin (2011) · Zbl 0855.93090
[42] Hu, QX; Zhang, DF; Wu, ZJ, Trajectory planning and tracking control for 6-DOF Stanford manipulator based on adaptive sliding mode multi-stage switching control, Int. J. Robust Nonlinear Control, 31, 14, 6602-6625 (2021) · Zbl 1527.93206 · doi:10.1002/rnc.5628
[43] Huang, H.C., Tsai, C.C., Lin, S.C.: Adaptive polar-space motion control for embedded omnidirectional mobile robots with parameter variations and uncertainties. J. Intell. Rob. Syst. 62(1), 81-102 (2011)
[44] Lin, LC; Shih, HY, Modeling and adaptive control of an omni-mecanum-wheeled robot, Intell. Control. Autom., 2013, 2, 166-179 (2013) · doi:10.4236/ica.2013.42021
[45] Campion, G.; Bastin, G.; D’Andrea-Novel, B., Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Autom., 12, 1, 47-62 (1996) · doi:10.1109/70.481750
[46] Cui, MY; Wu, ZJ, Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances, J. Frank. Inst., 356, 16, 9330-9343 (2019) · Zbl 1423.93273 · doi:10.1016/j.jfranklin.2019.08.038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.