×

Microscopical justification of the Winterbottom problem for well-separated lattices. (English) Zbl 1517.82018

Summary: We consider the discrete atomistic setting introduced in [the authors, J. Nonlinear Sci. 32, No. 3, Paper No. 32, 55 p. (2022; Zbl 1489.82023)] to microscopically justify the continuum model related to the Winterbottom problem, i.e., the problem of determining the equilibrium shape of crystalline film drops resting on a substrate, and relax the rigidity assumption considered in [loc. cit.] to characterize the wetting and dewetting regimes and to perform the discrete to continuum passage. In particular, all results of the authors [loc. cit.] are extended to the setting where the distance between the reference lattices for the film and the substrate is not smaller than the optimal bond length between a film and a substrate atom. Such optimal film-substrate bonding distance is prescribed together with the optimal film-film distance by means of two-body atomistic interaction potentials of Heitmann-Radin type, which are both taken into account in the discrete energy, and in terms of which the wetting-regime threshold and the effective expression for the wetting parameter in the continuum energy are determined.

MSC:

82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81V45 Atomic physics

Citations:

Zbl 1489.82023

References:

[1] Ambrosio, L.; Fusco, N.; Pallara, D., (Functions of Bounded Variation and Free Discontinuity Problems. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (2000), Clarendon Press: Clarendon Press New York) · Zbl 0957.49001
[2] Au Yeung, Y.; Friesecke, G.; Schmidt, B., Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff-shape, Calc. Var. Partial Differential Equations, 44, 81-100 (2012) · Zbl 1379.74002
[3] Bodineau, T.; Ioffe, D.; Velenik, Y., Winterbottom construction for finite range ferromagnetic models: an \(\mathcal{L}^1\)-approach, J. Stat. Phys., 105, 1-2, 93-131 (2001) · Zbl 1156.82327
[4] Cicalese, M.; Leonardi, G., Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities, Comm. Math. Phys., 375, 1931-1944 (2020) · Zbl 1445.74005
[5] Davoli, E.; Piovano, P., Analytical validation of the Young-Dupré law for epitaxially-strained thin films, Math. Models Methods Appl. Sci., 29-12, 2183-2223 (2019) · Zbl 1427.74115
[6] Davoli, E.; Piovano, P., Derivation of a heteroepitaxial thin-film model, Interface Free Bound., 22-1, 1-26 (2020) · Zbl 1437.35269
[7] Davoli, E.; Piovano, P.; Stefanelli, U., Wulff shape emergence in graphene, Math. Models Methods Appl. Sci., 26-12, 2277-2310 (2016) · Zbl 1355.82073
[8] Davoli, E.; Piovano, P.; Stefanelli, U., Sharp \(N^3 / 4\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice, J. Nonlinear Sci., 27-2, 627-660 (2017) · Zbl 1383.82063
[9] De Luca, L.; Novaga, M.; Ponsiglione, M., \( \Gamma \)-Convergence of the Heitmann-Radin sticky disc energy to the crystalline perimeter, J. Nonlinear Sci., 29, 1273-1299 (2019) · Zbl 1425.74108
[10] R.L. Dobrushin, Schlosman S. Kotecký, Wulff Construction: A Global Shape from Local Interaction, in: AMS Translations Series, vol. 104, Providence, 1992. · Zbl 0917.60103
[11] Evans, L. C.; Gariepy, R. F., (Measure Theory and Fine Properties of Functions. Measure Theory and Fine Properties of Functions, Studies in Advances Mathematics (2015), CRC Press: CRC Press Boca Raton) · Zbl 1310.28001
[12] Fonseca, I., The Wulff theorem revisited, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 432, 125-145 (1991) · Zbl 0725.49017
[13] Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M., Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results, Arch. Ration. Mech. Anal., 186, 477-537 (2007) · Zbl 1126.74029
[14] Fonseca, I.; Müller, S., A uniqueness proof for the Wulff problem, Proc. Edinb. Math. Soc., 119A, 125-136 (1991) · Zbl 0752.49019
[15] Friedrich, M.; Kreutz, L.; Schmidt, B., Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy, Arch. Ration. Mech. Anal., 240, 627-698 (2021) · Zbl 1462.74035
[16] Heitmann, R.; Radin, C., Ground states for sticky disks, J. Stat. Phys., 22, 281-287 (1980)
[17] Ioffe, D.; Schonmann, R., Dobrushin-Kotecký-Shlosman theory up to the critical temperature, Comm. Math. Phys., 199, 117-167 (1998) · Zbl 0929.60076
[18] Jiang, W.; Wang, Y.; Zhao, Q.; Srolovitz, D. J.; Bao, W., Solid-state dewetting and island morphologies in strongly anisotropic materials, Scr. Mater., 115, 123-127 (2016)
[19] Jiang, W.; Wang, Y.; Zhao, Q.; Srolovitz, D. J.; Bao, W., Stable equilibria of anisotropic particles on substrates: A generalized winterbottom construction, SIAM J. Appl. Math., 77, 6, 2093-2118 (2017) · Zbl 1386.74059
[20] Kotecký, R.; Pfister, C., Equilibrium shapes of crystals attached to walls, J. Stat. Phys., 76, 419-446 (1994) · Zbl 1080.82580
[21] Kreutz, L.; Piovano, P., Microscopic validation of a variational model of epitaxially strained crystalline films, SIAM J. Math. Anal., 53-1, 453-490 (2021) · Zbl 1456.74120
[22] Mainini, E.; Piovano, P.; Schmidt, B.; Stefanelli, U., \( N^3 / 4\) Law in the cubic lattice, J. Stat. Phys., 176-6, 480-1499 (2019) · Zbl 1426.82065
[23] Mainini, E.; Piovano, P.; Stefanelli, U., Crystalline and isoperimetric square configurations, Proc. Appl. Math. Mech., 14, 1045-1048 (2014)
[24] Mainini, E.; Piovano, P.; Stefanelli, U., Finite crystallization in the square lattice, Nonlinearity, 27, 717-737 (2014) · Zbl 1292.82043
[25] Mainini, E.; Schmidt, B., Maximal fluctuations around the Wulff shape for edge-isoperimetric sets in \(\mathbb{Z}^d\): a sharp scaling law, Comm. Math. Phys., 380, 947-971 (2020) · Zbl 1454.05121
[26] Pfister, C. E.; Velenik, Y., Mathematical theory of the wetting phenomenon in the 2D ising model, Helv. Phys. Acta, 69, 949-973 (1996) · Zbl 0882.60096
[27] Pfister, C. E.; Velenik, Y., Large deviations and continuous limit in the 2D ising model, Prob. Theory Rel. Fields, 109, 435-506 (1997) · Zbl 0904.60022
[28] Piovano, P.; Velčić, I., Microscopical justification of solid-state wetting and dewetting, J. Nonlinear Sci., 32-32 (2022) · Zbl 1489.82023
[29] Schmidt, B., Ground states of the 2D sticky disc model: fine properties and \(N^3 / 4\) law for the deviation from the asymptotic Wulff-shape, J. Stat. Phys., 153, 727-738 (2013) · Zbl 1292.82027
[30] Spencer, B. J., Asymptotic derivation of the glued-wetting-layer model and the contact-angle condition for Stranski-Krastanow islands, Phys. Rev. B, 59, 2011-2017 (1999)
[31] Spencer, B. J.; Tersoff, J., Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett., 79, 24, 4858 (1997)
[32] Winterbottom, W. L., Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metall., 15, 303-310 (1967)
[33] Wulff, G., Zur frage der geschwindigkeit des wastums und der auflösung der kristallflachen. Krystallographie und mineralogie, Z. Kristallner., 34, 449-530 (1901)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.