×

A Hu-Washizu variational approach to self-stabilized virtual elements: 2D linear elastostatics. (English) Zbl 1517.74091

Summary: An original, variational formulation of the Virtual Element Method (VEM) is proposed, based on a Hu-Washizu mixed variational statement for 2D linear elastostatics. The proposed variational framework appears to be ideal for the formulation of VEs, whereby compatibility is enforced in a weak sense and the strain model can be prescribed a priori, independently of the unknown displacement model. It is shown how the ensuing freedom in the definition of the strain model can be conveniently exploited for the formulation of self-stabilized and possibly locking-free low order VEs. The superior performances of the VEs formulated within this framework has been verified by application to several numerical tests.

MSC:

74S99 Numerical and other methods in solid mechanics
74B05 Classical linear elasticity

References:

[1] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math Models Methods Appl Sci, 23, 1, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[2] Beirão da Veiga, L.; Brezzi, F.; Marini, LD, Virtual elements for linear elasticity problems, SIAM J Numer Anal, 51, 2, 794-812 (2013) · Zbl 1268.74010 · doi:10.1137/120874746
[3] Gain, AL; Talischi, C.; Paulino, GH, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput Methods Appl Mech Eng, 282, 132-160 (2014) · Zbl 1423.74095 · doi:10.1016/J.CMA.2014.05.005
[4] Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput Mech, 60, 3, 355-377 (2017) · Zbl 1386.74132 · doi:10.1007/s00466-017-1404-5
[5] Chi, H.; da Veiga, LB; Paulino, G., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput Methods Appl Mech Eng, 318, 148-192 (2017) · Zbl 1439.74397 · doi:10.1016/j.cma.2016.12.020
[6] Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L., A stress/displacement virtual element method for plane elasticity problems, Comput Methods Appl Mech Eng, 325, 155-174 (2017) · Zbl 1439.74040 · doi:10.1016/j.cma.2017.06.036
[7] Dassi, F.; Lovadina, C.; Visinoni, M., A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Comput Methods Appl Mech Eng, 364 (2020) · Zbl 1442.65358 · doi:10.1016/j.cma.2020.112910
[8] Dassi, F.; Lovadina, C.; Visinoni, M., Hybridization of the virtual element method for linear elasticity problems, Math Models Methods Appl Sci, 31, 14, 2979-3008 (2021) · Zbl 1480.65331 · doi:10.1142/S0218202521500676
[9] Cáceres, E.; Gatica, GN; Sequeira, FA, A mixed virtual element method for a pseudostress-based formulation of linear elasticity, Appl Numer Math, 135, 423-442 (2019) · Zbl 1507.65234 · doi:10.1016/J.APNUM.2018.09.003
[10] Washizu, K., Variational methods in elasticity and plasticity (1982), New York: Pergamon Press, New York · Zbl 0498.73014
[11] Save, M., On yield conditions in generalized stresses, Q Appl Math, 19, 3, 259-267 (1961) · Zbl 0103.17301 · doi:10.1090/QAM/135772
[12] Corradi, L., A displacement formulation for the finite element elastic-plastic problem, Meccanica, 18, 2, 77-91 (1983) · Zbl 0519.73072 · doi:10.1007/BF02128348
[13] Wriggers, P.; Reddy, BD; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput Mech, 60, 2, 253-268 (2017) · Zbl 1386.74146 · doi:10.1007/s00466-017-1405-4
[14] Cangiani, A.; Manzini, G.; Russo, A.; Sukumar, N., Hourglass stabilization and the virtual element method, Int J Numer Methods Eng, 102, 3-4, 404-436 (2015) · Zbl 1352.65475 · doi:10.1002/NME.4854
[15] Argyris J (1965) In: Opening paper to the air force conference on matrix methods in structural mechanics at Wright-Patterson air force base, Dayton, Ohio, Wright-Patterson U.S.A.F. Base, pp 1-198
[16] Perego, U., A variationally consistent generalized variable formulation for enhanced strain finite elements, Commun Numer Methods Eng, 16, 3, 151-163 (2000) · Zbl 0969.74066 · doi:10.1002/(SICI)1099-0887(200003)16:3<151::AID-CNM309>3.0.CO;2-5
[17] Park, K.; Chi, H.; Paulino, GH, On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration, Comput Methods Appl Mech Eng, 356, 669-684 (2019) · Zbl 1441.74269 · doi:10.1016/J.CMA.2019.06.031
[18] Berrone S, Borio A, Marcon F (2021) Lowest order stabilization free virtual element method for the Poisson equation. arXiv preprint arXiv:2103.16896
[19] Chen, A.; Sukumar, N., Stabilization-free serendipity virtual element method for plane elasticity, Comput Methods Appl Mech Eng, 404 (2023) · Zbl 07644857 · doi:10.1016/J.CMA.2022.115784
[20] D’Altri, AM; de Miranda, S.; Patruno, L.; Sacco, E., An enhanced VEM formulation for plane elasticity, Comput Methods Appl Mech Eng, 376 (2021) · Zbl 1506.74397 · doi:10.1016/j.cma.2020.113663
[21] Park, K.; Chi, H.; Paulino, GH, B-bar virtual element method for nearly incompressible and compressible materials, Meccanica, 56, 6, 1423-1439 (2020) · Zbl 1520.74084 · doi:10.1007/s11012-020-01218-x
[22] Comi C, Maier G, Perego U (1992) Generalized variable finite element modeling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. Comput Methods Appl Mech Eng 96(2):213-237. doi:10.1016/0045-7825(92)90133-5 · Zbl 0761.73107
[23] Comi C, Perego U (1995) A unified approach for variationally consistent finite elements in elastoplasticity. Comput Methods Appl Mech Eng 121(1-4):323-344. doi:10.1016/0045-7825(94)00703-P · Zbl 0852.73058
[24] Chin, E.; Sukumar, N., Scaled boundary cubature scheme for numerical integration over planar regions with affine and curved boundaries, Comput Methods Appl Mech Eng, 380 (2021) · Zbl 1506.65047 · doi:10.1016/j.cma.2021.113796
[25] Simo, JC; Rifai, MS, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Methods Eng, 29, 8, 1595-1638 (1990) · Zbl 0724.73222 · doi:10.1002/NME.1620290802
[26] Pian, TH; Sumihara, K., Rational approach for assumed stress finite elements, Int J Numer Methods Eng, 20, 9, 1685-1695 (1984) · Zbl 0544.73095 · doi:10.1002/NME.1620200911
[27] Cremonesi M, Lamperti A, Lovadina C, Perego U, Russo A (2022) Analysis of a self-stabilized quadrilateral virtual element for 2D linear elasticity in the Hu-Washizu formulation (submitted)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.