×

A two-way coupled model of visco-thermo-acoustic effects in photoacoustic trace gas sensors. (English) Zbl 1517.35107

Summary: We introduce the first two-way coupled model for the thermo-viscous damping of a mechanical structure (such as quartz tuning fork) that is forced by the weak acoustic and thermal waves generated when a laser source periodically interacts with a trace gas. The model is based on a Helmholtz system of thermo-visco-acoustic equations in the fluid, together with a system of equations for the temperature and the displacement of the structure. These two subsystems are coupled across the fluid-structure interface via several conditions. With this model, the user specifies the geometry of the structure and the viscous and thermal parameters of the fluid, and the model outputs an effective damping parameter and a signal strength that is proportional to the concentration of the trace gas. This new model is a significant improvement over existing one-way coupled models in which damping effects are incorporated via a priori laboratory measurements. Analytical solutions derived for an annular structure show reasonable agreement between the one-way and two-way coupled models at higher ambient pressures. However, at low ambient pressure the one-way coupled model does not adequately capture thermo-viscous effects.

MSC:

35J57 Boundary value problems for second-order elliptic systems
Full Text: DOI

References:

[1] Aoust, G., Levy, R., Bourgeteau, B., and Traon, O. Le, Viscous damping on flexural mechanical resonators, Sens. Actuators A: Phys., 230 (2015), pp. 126-135.
[2] Aoust, G., Levy, R., Bourgeteau, B., and Traon, O. Le, Acoustic damping on flexural mechanical resonators, Sens. Actuators A: Phys., 238 (2016), pp. 158-166.
[3] Aoust, G., Levy, R., Raybaut, M., Godard, A., Melkonian, J.-M., and Lefebvre, M., Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor, Appl. Phys. B, 123 (2017), 63.
[4] French, A. P., Vibrations and Waves, W. W. Norton & Company, New York, 1971.
[5] Brennan, B. and Kirby, R. C., Finite element approximation and preconditioners for a coupled thermal-acoustic model, Comput. Math. Appl., 70 (2015), pp. 2342-2354. · Zbl 1443.65312
[6] Burman, E. and Fernández, M., Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling, Internat. J. Numer. Methods Engrg., 97 (2013), pp. 739-758. · Zbl 1352.74104
[7] Cao, Y. and Diebold, G. J., Effects of heat conduction and viscosity on photoacoustic waves from droplets, Opt. Eng., 36 (1997), pp. 417-422.
[8] Carlson, D., Linear thermoelasticity, in Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, Truesdell, C., ed., Springer-Verlag, Berlin, Heidelberg, 1973, pp. 273-345.
[9] Chorin, A. J. and Marsden, J. E., A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979. · Zbl 0417.76002
[10] Cordioli, J., Martins, G., Mareze, P., and Jordan, R., A comparison of models for visco-thermal acoustic problems, in InterNoise 10, International Institute of Noise Control Engineering, 2010, pp. 6992-7001.
[11] Cox, R., Zhang, J., Josse, F., Heinrich, S. M., Dufour, I., Beardslee, L. A., and Brand, O., Damping and mass sensitivity of laterally vibrating resonant microcantilevers in viscous liquid media, in 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, , 2011, pp. 1-6.
[12] Dong, L., Kosterev, A. A., Thomazy, D., and Tittel, F. K., QEPAS spectrophones: Design, optimization, and performance, Appl. Phys. B, 100 (2010), pp. 627-635.
[13] Duquesnoy, M., Aoust, G., Melkonian, J.-M., Lévy, R., Raybaut, M., and Godard, A., Quartz enhanced photoacoustic spectroscopy based on a custom quartz tuning fork, Sensors, 19 (2019), p. 1362.
[14] Firebaugh, S. L., Sampaolo, A., Patimisco, P., Spagnolo, V., and Tittel, F. K., Modeling the dependence of fork geometry on the performance of quartz enhanced photoacoustic spectroscopic sensors, in 2015 Conference on Lasers and Electro-Optics (CLEO), , 2015, ATu1J.3.
[15] Firebaugh, S. L., Terray, E. A., and Dong, L., Optimization of resonator radial dimensions for quartz enhanced photoacoustic spectroscopy systems, in Proc. SPIE 8600, Laser Resonators, Microresonators, and Beam Control XV, , 2013, 86001S.
[16] Gerardo-Giorda, L., Nobile, F., and Vergara, C., Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems, SIAM J. Numer. Anal., 48 (2010), pp. 2091-2116, doi:10.1137/09076605X. · Zbl 1392.74075
[17] Joly, N., Bruneau, M., and Bossart, R., Coupled equations for particle velocity and temperature variation as the fundamental formulation of linear acoustics in thermo-viscous fluids at rest, Acta Acust United Acustica, 92 (2006), pp. 202-209.
[18] Kaderli, J., Zweck, J., Safin, A., and Minkoff, S., An analytic solution to the coupled pressure-temperature equations for modeling of photoacoustic trace gas sensors, J. Engrg. Math., 103 (2017), pp. 173-193. · Zbl 1388.35018
[19] Kirby, R. C. and Coogan, P., Optimal-order preconditioners for the Morse-Ingard equations, Comput. Math. Appl., 79 (2020), pp. 2458-2471. · Zbl 1439.65182
[20] Kirby, R. C., Klöckner, A., and Sepanski, B., Finite elements for Helmholtz equations with a nonlocal boundary condition, SIAM J. Sci. Comput., 43 (2021), pp. A1671-A1691, doi:10.1137/20M1368100. · Zbl 1472.65146
[21] Kosterev, A., Bakhirkin, Y., Curl, R., and Tittel, F., Quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 27 (2002), pp. 1902-1904.
[22] Kosterev, A. A. and Doty, J. H. III, Resonant optothermoacoustic detection: Technique for measuring weak optical absorption by gases and micro-objects, Opt. Lett., 35 (2010), pp. 3571-3573.
[23] Kosterev, A. A. and Tittel, F. K., Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser, Appl. Opt., 43 (2004), pp. 6213-6217.
[24] Kosterev, A. A., Tittel, F. K., Serebryakov, D. V., Malinovsky, A. L., and Morozov, I. V., Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instruments, 76 (2005), 043105.
[25] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Addison-Wesley Publishing Company, Reading, MA, 1959.
[26] Lavergne, T., Joly, N., and Durand, S., Acoustic thermal boundary condition on thin bodies: Application to membranes and fibres, Acta Acust United Acustica, 99 (2013), pp. 524-536.
[27] Liu, K., Guo, X., Yi, H., Chen, W., Zhang, W., and Gao, X., Off-beam quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 34 (2009), pp. 1594-1596.
[28] Miklós, A., Schäfer, S., and Hess, P., Photoacoustic spectroscopy, theory, in Encyclopedia of Spectroscopy and Spectrometry, Lindon, J. C., Tranter, G. E., and Holmes, J. L., eds., Vol. 3, Academic Press, 2000, pp. 1815-1822.
[29] Milde, T., Hoppe, M., Tatenguem, H., Mordmüller, M., O’Gorman, J., Willer, U., Schade, W., and Sacher, J., QEPAS sensor for breath analysis: A behavior of pressure, Appl. Opt., 57 (2018), pp. C120-C127.
[30] Morse, P. M. and Ingard, K. U., Theoretical Acoustics, Princeton University Press, Princeton, NJ, 1986.
[31] Newell, W. E., Miniaturization of tuning forks, Science, 161 (1968), pp. 1320-1326.
[32] Patimisco, P., Sampaolo, A., Dong, L., Tittel, F. K., and Spagnolo, V., Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing, Sens. Actuators B: Chem., 227 (2016), pp. 539-546.
[33] Patimisco, P., Sampaolo, A., Dong, L., Tittel, F. K., and Spagnolo, V., Recent advances in quartz enhanced photoacoustic sensing, Appl. Phys. Rev., 5 (2018), 011106.
[34] Petra, N., Zweck, J., Kosterev, A., Minkoff, S., and Thomazy, D., Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor, Appl. Phys. B, 94 (2009), pp. 673-680.
[35] Petra, N., Zweck, J., Minkoff, S. E., Kosterev, A. A., and Doty, J. H. III, Modeling and design optimization of a resonant optothermoacoutstic trace gas sensor, SIAM J. Appl. Math., 71 (2011), pp. 309-332, doi:10.1137/100807181. · Zbl 1245.80003
[36] Quarteroni, A. and Valli, A., Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999. · Zbl 0931.65118
[37] Safin, A., Modeling Trace Gas Sensors with the Coupled Pressure-Temperature Equations, Ph.D. thesis, The University of Texas at Dallas, 2018.
[38] Safin, A., Minkoff, S., and Zweck, J., A preconditioned finite element solution of the coupled pressure-temperature equations used to model trace gas sensors, SIAM J. Sci. Comput., 40 (2018), pp. B1470-B1493, doi:10.1137/17M1145823. · Zbl 1401.35040
[39] Safin, A., Zweck, J., and Minkoff, S. E., A one-way coupled model for the vibration of tuning fork-based trace gas sensors driven by a thermoacoustic wave, Appl. Phys. B, 126 (2020), 29.
[40] Sneddon, I. N., The Linear Theory of Thermoelasticity, University of Glasgow, Springer-Verlag, 1974. · Zbl 0332.73014
[41] Solga, S., Schwartz, T., Mudalel, M., Spacek, L., Lewicki, R., Tittel, F., Loccioni, C., and Risby, T., Factors influencing breath ammonia determination, J. Breath Res., 7 (2013), 037101.
[42] Tittel, F. and Lewicki, R., Tunable mid-infrared laser absorption spectroscopy, in Semiconductor Lasers: Fundamentals and Applications, Baranov, A. and Tournie, E., eds., Woodhead Publishing Ltd, 2013, pp. 579-629.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.