×

A preconditioned finite element solution of the coupled pressure-temperature equations used to model trace gas sensors. (English) Zbl 1401.35040

Summary: Quartz enhanced photoacoustic spectroscopy (QEPAS) is a technique for detecting trace gases which relies on a quartz tuning fork resonator to amplify and measure the weak acoustic pressure waves that are generated when a laser heat source periodically interacts with a gas sample. At low ambient pressures, the same tuning fork can instead detect thermal diffusion waves generated by this laser-gas interaction in a process called resonant optothermoacoustic detection (ROTADE). In this paper, we present a unified computational model for QEPAS and ROTADE sensors that is based on a coupled system of Helmholtz equations for pressure and temperature in a fluid domain surrounding the tuning fork. In the tuning fork itself, the standard heat equation is used to solve for temperature. We employ the perfectly matched layer (PML) approach to absorb outgoing waves and prevent reflections off of the boundary of the computational domain. The resulting linear system is highly ill conditioned, but Krylov subspace solvers can be used to solve the system effectively if one employs an appropriate parallel block preconditioner. This method reduces the problem to that of solving a scalar Helmholtz problem with PML, which we precondition by coupling an algebraic multigrid solver in the interior of the computational domain to a direct solver in the PML region. Numerical results indicate that the preconditioner for the scalar Helmholtz problem with PML is both scalable and mesh-independent. Simulations show that the coupled pressure-temperature waves can strongly differ from the solution to the acoustic wave equation at low ambient pressures. In particular, interactions between the pressure and temperature solutions of the coupled system contribute to the reduced sensitivity of ROTADE sensors which has been experimentally observed in certain parameter regimes.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J57 Boundary value problems for second-order elliptic systems
35K05 Heat equation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] M. Adams, Algebraic multigrid methods for direct frequency response analyses in solid mechanics, Comput. Mech., 39 (2007), pp. 497–507. · Zbl 1163.74043
[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41, . · Zbl 0992.65018
[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32 (2006), pp. 136–156.
[4] G. Aoust, R. Levy, B. Bourgeteau, and O. L. Traon, Viscous damping on flexural mechanical resonators, Sens. Actuator A-Phys., 230 (2015), pp. 126–135.
[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, \ttPETSc Users Manual, Technical report ANL-95/11: Revision 3.7, Argonne National Laboratory, Lemont, IL, 2016.
[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Basel, 1997, pp. 163–202. · Zbl 0882.65154
[7] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II—a general purpose object oriented finite element library, ACM Trans. Math. Software, 33 (2007), 24. · Zbl 1365.65248
[8] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185–200. · Zbl 0814.65129
[9] B. Brennan and R. C. Kirby, Finite element approximation and preconditioners for a coupled thermal-acoustic model, Comput. Math. Appl., 70 (2015), pp. 2342–2354. · Zbl 1443.65312
[10] B. Brennan, R. C. Kirby, J. Zweck, and S. E. Minkoff, High-performance python-based simulations of pressure and temperature waves in a trace gas sensor, in Proceedings of PyHPC 2013: Python for High Perfomance and Scientific Computing, 2013.
[11] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133, . · Zbl 1230.65106
[12] Y. Cao and G. J. Diebold, Effects of heat conduction and viscosity on photoacoustic waves from droplets, Opt. Eng., 36 (1997), pp. 417–422.
[13] Z. Chen, D. Cheng, W. Feng, T. Wu, and H. Yang, A multigrid-based preconditioned Krylov subspace method for the Helmholtz equation with PML, J. Math. Anal. Appl., 383 (2011), pp. 522–540. · Zbl 1231.65198
[14] W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microw. Opt. Technol. Lett., 7 (1994), pp. 599–604.
[15] M. S. Cramer, Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids, 24 (2012), 066102.
[16] Crane Co., Flow of Fluids Through Valves, Fittings, and Pipe, Technical paper 410, Crane Co., New York, 1982.
[17] R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. Tittel, Quantum cascade lasers in chemical physics, Chem. Phys. Lett., 487 (2010), pp. 1–18.
[18] L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, QEPAS spectrophones: Design, optimization, and performance, Appl. Phys. B, 100 (2010), pp. 627–635.
[19] A. Elia, P. M. Lugará, C. Di Franco, and V. Spagnolo, Photoacoustic techniques for trace gas sensing based on semiconductor laser sources, Sensors, 9 (2009), pp. 9616–9628.
[20] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers, Multiscale Model. Simul., 9 (2011), pp. 686–710, . · Zbl 1228.65234
[21] Y. A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation, Arch. Comput. Methods Eng., 15 (2008), pp. 37–66. · Zbl 1158.65078
[22] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492, . · Zbl 1095.65109
[23] S. Firebaugh, E. Terray, and L. Dong, Optimization of Resonator Radial Dimensions for Quartz Enhanced Photoacoustic Spectroscopy Systems, Proc. SPIE 8600, 2013.
[24] S. L. Firebaugh, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, Modeling the dependence of fork geometry on the performance of quartz enhanced photoacoustic spectroscopic sensors, in Proceedings of the 2015 IEEE Conference on Lasers and Electro-Optics (CLEO), 2015, ATu1J3.
[25] C. Geuzaine and J.-F. Remacle, \ttGmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309–1331. · Zbl 1176.74181
[26] A. Glière, J. Rouxel, B. Parvitte, S. Boutami, and V. Zéninari, A coupled model for the simulation of miniaturized and integrated photoacoustic gas detector, Int. J. Thermophys., 34 (2013), pp. 2119–2135.
[27] F. J. Harren, J. Mandon, and S. M. Cristescu, Photoacoustic spectroscopy in trace gas monitoring, in Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester, UK, 2000, pp. 2203–2226.
[28] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362. · Zbl 1136.65315
[29] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams, An Overview of Trilinos, Technical report SAND2003-2927, Sandia National Laboratories, Albuquerque, NM, 2003. · Zbl 1136.65354
[30] J. Kaderli, J. Zweck, A. Safin, and S. Minkoff, An analytic solution to the coupled pressure-temperature equations for modeling of photoacoustic trace gas sensors, J. Engrg. Math., 103 (2017), pp. 173–193. · Zbl 1388.35018
[31] G. A. A. Kahou, E. Kamgnia, and B. Philippe, An explicit formulation of the multiplicative Schwarz preconditioner, Appl. Numer. Math., 57 (2007), pp. 1197–1213. · Zbl 1134.65035
[32] A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, Quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 27 (2002), pp. 1902–1904.
[33] A. A. Kosterev and J. H. Doty III, Resonant optothermoacoustic detection: Technique for measuring weak optical absorption by gases and micro-objects, Opt. Lett., 35 (2010), pp. 3571–3573.
[34] A. A. Kosterev and F. K. Tittel, Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser, Appl. Opt., 43 (2004), pp. 6213–6217.
[35] A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instrum., 76 (2005), 043105.
[36] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing, 60 (1998), pp. 229–241. · Zbl 0899.35026
[37] F. Magoulès, P. Iványi, and B. Topping, Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 4797–4818. · Zbl 1112.74444
[38] P. Martinsson, A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method, J. Comput. Phys., 242 (2013), pp. 460–479. · Zbl 1297.65169
[39] T. Mary, Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability, Ph.D. thesis, University of Toulouse, Toulouse, France, 2017.
[40] A. Miklós, P. Hess, and Z. Bozóki, Application of acoustic resonators in photoacoustic trace gas analysis and metrology, Rev. Sci. Instrum., 72 (2001), pp. 1937–1955.
[41] A. Miklós, S. Schäfer, and P. Hess, Photoacoustic spectroscopy, theory, in Encyclopedia of Spectroscopy and Spectrometry, Vol. 3, J. C. Lindon, G. E. Tranter, and J. L. Holmes, eds., Academic Press, London, 2000, pp. 1815–1822.
[42] P. Morse and K. Ingard, Theoretical Acoustics, McGraw–Hill, New York, 1968.
[43] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972, . · Zbl 0959.65063
[44] H. Nouira, E. Foltête, L. Hirsinger, and S. Ballandras, Investigation of the effects of air on the dynamic behavior of a small cantilever beam, J. Sound Vib., 305 (2007), pp. 243–260.
[45] J. Nye, Physical Properties of Crystals, Oxford University Press, New York, 2000.
[46] P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy: A review, Sensors, 14 (2014), pp. 6165–6206.
[47] J. C. Petersen, L. Lamard, Y. Feng, J.-F. Focant, A. Peremans, and M. Lassen, Quartz-Enhanced Photo-acoustic Spectroscopy for Breath Analyses, Proc. SPIE 10055, 2017.
[48] N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor, Appl. Phys. B, 94 (2009), pp. 673–680.
[49] N. Petra, J. Zweck, S. E. Minkoff, A. A. Kosterev, and J. H. Doty III, Modeling and design optimization of a resonant optothermoacoustic trace gas sensor, SIAM J. Appl. Math., 71 (2011), pp. 309–332, . · Zbl 1245.80003
[50] J. Poulson, B. Engquist, S. Li, and L. Ying, A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations, SIAM J. Sci. Comput., 35 (2013), pp. C194–C212, . · Zbl 1275.65073
[51] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, The Clarendon Press, Oxford University Press, New York, 1999. · Zbl 0931.65118
[52] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003, . · Zbl 1031.65046
[53] A. Siegman, Lasers, University Science Books, Oxford, UK, 1986.
[54] S. Wang, X. S. Li, F.-H. Rouet, J. Xia, and M. V. De Hoop, A parallel geometric multifrontal solver using hierarchically semiseparable structure, ACM Trans. Math. Software, 42 (2016), 21. · Zbl 1369.65050
[55] H. Zheng, X. Yin, L. Dong, H. Wu, X. Liu, W. Ma, L. Zhang, W. Yin, and S. Jia, Multi-quartz enhanced photoacoustic spectroscopy with different acoustic microresonator configurations, J. Spectros., 2015 (2015), 218413.
[56] X. Zuo, Z. Mo, T. Gu, X. Xu, and A. Zhang, Multi-core parallel robust structured multifrontal factorization method for large discretized PDEs, J. Comput. Appl. Math., 296 (2016), pp. 36–46. · Zbl 1330.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.