×

Weighted \(L^2\) holomorphic functions on ball-fiber bundles over compact Kähler manifolds. (English) Zbl 1517.32011

Summary: Let \(\widetilde{M}\) be a complex manifold, \(\Gamma\) be a torsion-free cocompact lattice of \(\mathrm{Aut}(\widetilde{M})\) and \(\rho :\Gamma \rightarrow SU(N,1)\) be a representation. Suppose that there exists a \(\rho\)-equivariant totally geodesic isometric holomorphic embedding \(\imath :\widetilde{M}\rightarrow\mathbb{B}^N\). Let \(M:=\widetilde{M}/\Gamma\) and \(\Sigma :=\mathbb{B}^N /\rho (\Gamma)\). In this paper, we investigate a relation between weighted \(L^2\) holomorphic functions on the fiber bundle \(\Omega :=M\times_{\rho} \mathbb{B}^N\) and the holomorphic sections of the pull-back bundle \(\imath^* (S^m T^*_{\Sigma})\) over \(M\). In particular, \(A^2_{\alpha} (\Omega)\) has infinite dimension for any \(\alpha >-1\) and if \(n<N\), then \(A^2_{-1}(\Omega)\) also has the same property. As an application, if \(\Gamma\) is a torsion-free cocompact lattice in \(SU (n, 1), n\geq 2\), and \(\rho :\Gamma \rightarrow SU(N,1)\) is a maximal representation, then for any \(\alpha >-1, A^2_{\alpha} (\mathbb{B}^n \times_{\rho} \mathbb{B}^N)\) has infinite dimension. If \(n<N\), then \(A_{-1}^2 (\mathbb{B}^n \times_{\rho} \mathbb{B}^N)\) also has the same property.

MSC:

32A36 Bergman spaces of functions in several complex variables
32M18 Automorphism groups of other complex spaces
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results

References:

[1] Adachi, M.; Byun, J.; Cho, H., On a hyperconvex manifold without non-constant bounded holomorphic functions, Geometric Complex Analysis. Springer Proceedings in Mathematics & Statistics, 1-10 (2018), Singapore: Springer, Singapore · Zbl 1405.32054 · doi:10.1007/978-981-13-1672-2_1
[2] Adachi, M., On weighted Bergman spaces of a domain with Levi-flat boundary, Trans. Am. Math. Soc., 374, 10, 7499-7524 (2021) · Zbl 1481.32004 · doi:10.1090/tran/8471
[3] Bland, JS, On the existence of bounded holomorphic functions on complete Kähler manifolds, Invent. Math., 81, 3, 555-566 (1985) · Zbl 0588.32001 · doi:10.1007/BF01388588
[4] Bertin, J., Demailly, J.-P., Illusie, L., Peters, C.: Introduction to Hodge theory. Translated from the 1996 French original by James Lewis and Peters. SMF/AMS Texts and Monographs, vol. 8, p. 232. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2002) · Zbl 0996.14003
[5] Corlette, K., Flat \(G\)-bundles with canonical metrics, J. Differ. Geom., 28, 3, 361-382 (1988) · Zbl 0676.58007 · doi:10.4310/jdg/1214442469
[6] Deng, F., Fornæss, John Erik Flat bundles over some compact complex manifolds, J. Geom. Anal., 30, 4, 3484-3497 (2020) · Zbl 1460.32031 · doi:10.1007/s12220-019-00204-4
[7] Diederich, K., Ohsawa, Takeo Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci., 21, 4, 819-833 (1985) · Zbl 0601.32023 · doi:10.2977/prims/1195178932
[8] Greene, RE; Wu, H., Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Mathematics (1979), Berlin: Springer, Berlin · Zbl 0414.53043 · doi:10.1007/BFb0063413
[9] Lee, S., Seo, A.: Symmetric differentials and Jets extension of \(L^2\) holomorphic functions, to appear in Indiana University Mathematics Journal · Zbl 1530.32004
[10] Seo, A., Weakly 1-completeness of holomorphic fiber bundles over compact Kähler manifolds, J. Lond. Math. Soc. (2), 106, 3, 2305-2341 (2022) · Zbl 1522.32046 · doi:10.1112/jlms.12635
[11] Siu, YT; Yau, ST, Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. Math. (2), 105, 2, 225-264 (1977) · Zbl 0358.32006 · doi:10.2307/1970998
[12] Zhao, R.; Zhu, K., Theory of Bergman spaces in the unit ball of \({\mathbb{C} }^n\), Mém. Soc. Math. Fr. (N.S.), 115, 2008, 103 (2009) · Zbl 1176.32001
[13] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, 271 (2005), New York: Springer, New York · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.