×

On weighted Bergman spaces of a domain with Levi-flat boundary. (English) Zbl 1481.32004

In the present article the author studies holomorphic functions on a certain class of pseudoconvex domains \(\Omega\) that are embedded as relatively compact domains in a holomorphic \(\mathbb{CP}^1\)-bundle over a compact Riemann surface. The boundary \(\partial\Omega\) of these domains \(\Omega\) is a real-analytic Levi-flat hypersurface, that is, it is foliated by Riemann surfaces. Such domains are of great interest in connection with the Levi problem on complex manifolds. From the general theory of holomorphic functions of several variables, one can easily see that \(\Omega\) admits plenty of non-constant holomorphic functions. In the present article, it is shown that \(\Omega\) also admits lots of non-constant holomorphic functions with slow growth, namely the weighted Bergman space \(A^2_\alpha(\Omega)\) of weight order \(\alpha >-1\) is infinite dimensional (Main theorem). These holomorphic functions are produced using an integral formula from holomorphic differentials on the Riemann surface. On the other hand, the Hardy space \(A^2_{-1}(\Omega)\) consists only of the constant functions. In particular, there are no bounded holomorphic functions on \(\Omega\) except the constant functions (Corollary 2).

MSC:

32A36 Bergman spaces of functions in several complex variables
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32T27 Geometric and analytic invariants on weakly pseudoconvex boundaries
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators

References:

[1] Adachi, Masanori, A local expression of the Diederich-Fornaess exponent and the exponent of conformal harmonic measures, Bull. Braz. Math. Soc. (N.S.), 46, 1, 65-79 (2015) · Zbl 1343.32024 · doi:10.1007/s00574-015-0084-z
[2] Adachi, Masanori; Brinkschulte, Judith, A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains, Nagoya Math. J., 220, 67-80 (2015) · Zbl 1334.32013 · doi:10.1215/00277630-3335655
[3] Berndtsson, Bo; Charpentier, Philippe, A Sobolev mapping property of the Bergman kernel, Math. Z., 235, 1, 1-10 (2000) · Zbl 0969.32015 · doi:10.1007/s002090000099
[4] Brunella, Marco, Codimension one foliations on complex tori, Ann. Fac. Sci. Toulouse Math. (6), 19, 2, 405-418 (2010) · Zbl 1246.53035
[5] Cao, JunYan; Demailly, Jean-Pierre; Matsumura, S., A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math., 60, 6, 949-962 (2017) · Zbl 1379.32017 · doi:10.1007/s11425-017-9066-0
[6] Cao, Jianguo; Shaw, Mei-Chi; Wang, Lihe, Estimates for the \(\overline \partial \)-Neumann problem and nonexistence of \(C^2\) Levi-flat hypersurfaces in \(\mathbb{C}\text P^n\), Math. Z., 248, 1, 183-221 (2004) · Zbl 1057.32012 · doi:10.1007/s00209-004-0661-0
[7] Chen, Bo-Yong, Weighted Bergman spaces and the \(\overline \partial \)-equation, Trans. Amer. Math. Soc., 366, 8, 4127-4150 (2014) · Zbl 1301.32002 · doi:10.1090/S0002-9947-2014-06113-8
[8] Demailly, Jean-Pierre, Extension of holomorphic functions defined on non reduced analytic subvarieties. The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I, Adv. Lect. Math. (ALM) 35, 191-222 (2016), Int. Press, Somerville, MA · Zbl 1360.14025
[9] Diederich, Klas; Ohsawa, Takeo, Harmonic mappings and disc bundles over compact K\"{a}hler manifolds, Publ. Res. Inst. Math. Sci., 21, 4, 819-833 (1985) · Zbl 0601.32023 · doi:10.2977/prims/1195178932
[10] Feres, R.; Zeghib, A., Leafwise holomorphic functions, Proc. Amer. Math. Soc., 131, 6, 1717-1725 (2003) · Zbl 1009.37015 · doi:10.1090/S0002-9939-03-06909-0
[11] Forelli, Frank; Rudin, Walter, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J., 24, 593-602 (1974/75) · Zbl 0297.47041 · doi:10.1512/iumj.1974.24.24044
[12] Fu, Siqi; Shaw, Mei-Chi, The Diederich-Forn\ae ss exponent and non-existence of Stein domains with Levi-flat boundaries, J. Geom. Anal., 26, 1, 220-230 (2016) · Zbl 1341.32026 · doi:10.1007/s12220-014-9546-6
[13] Garnett, Lucy, Foliations, the ergodic theorem and Brownian motion, J. Functional Analysis, 51, 3, 285-311 (1983) · Zbl 0524.58026 · doi:10.1016/0022-1236(83)90015-0
[14] Grauert, Hans, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68, 460-472 (1958) · Zbl 0108.07804 · doi:10.2307/1970257
[15] Guan, Qi’an; Zhou, Xiangyu, A solution of an \(L^2\) extension problem with an optimal estimate and applications, Ann. of Math. (2), 181, 3, 1139-1208 (2015) · Zbl 1348.32008 · doi:10.4007/annals.2015.181.3.6
[16] Henkin, Gennadi M.; Iordan, Andrei, Regularity of \(\overline \partial\) on pseudoconcave compacts and applications, Asian J. Math., 4, 4, 855-883 (2000) · Zbl 0998.32021 · doi:10.4310/AJM.2000.v4.n4.a9
[17] Hisamoto, Tomoyuki, Remarks on \(L^2\) jet extension and extension of singular hermitian metric with semipositive curvature · Zbl 1277.32019
[18] Hopf, Eberhard, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc., 39, 2, 299-314 (1936) · Zbl 0014.08303 · doi:10.2307/1989750
[19] Hosono, Genki, The optimal jet \(L^2\) extension of Ohsawa-Takegoshi type, Nagoya Math. J., 239, 153-172 (2020) · Zbl 1452.32015 · doi:10.1017/nmj.2018.31
[20] Kohn, J. J., Quantitative estimates for global regularity. Analysis and geometry in several complex variables, Katata, 1997, Trends Math., 97-128 (1999), Birkh\"{a}user Boston, Boston, MA · Zbl 0941.32034
[21] Ligocka, Ewa, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math., 94, 3, 25-272 (1989) · Zbl 0688.32020 · doi:10.4064/sm-94-3-257-272
[22] Ohsawa, Takeo, On the extension of \(L^2\) holomorphic functions. VI. A limiting case. Explorations in complex and Riemannian geometry, Contemp. Math. 332, 235-239 (2003), Amer. Math. Soc., Providence, RI · Zbl 1049.32010 · doi:10.1090/conm/332/05939
[23] Ohsawa, Takeo, Levi flat hypersurfaces-Results and questions around basic examples · Zbl 1337.32005
[24] Ohsawa, Takeo, \(L^2\) approaches in several complex variables, Springer Monographs in Mathematics, xi+258 pp. (2018), Springer, Tokyo · Zbl 1439.32003 · doi:10.1007/978-4-431-56852-0
[25] Pinton, Stefano; Zampieri, Giuseppe, The Diederich-Fornaess index and the global regularity of the \(\bar \partial \)-Neumann problem, Math. Z., 276, 1-2, 93-113 (2014) · Zbl 1295.32052 · doi:10.1007/s00209-013-1188-z
[26] Popovici, Dan, \(L^2\) extension for jets of holomorphic sections of a Hermitian line bundle, Nagoya Math. J., 180, 1-34 (2005) · Zbl 1116.32017 · doi:10.1017/S0027763000009168
[27] Sullivan, Dennis, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, N.Y., 1978, Ann. of Math. Stud. 97, 465-496 (1981), Princeton Univ. Press, Princeton, N.J. · Zbl 0567.58015
[28] Tsuji, M., Potential theory in modern function theory, 590 pp. (1959), Maruzen Co., Ltd., Tokyo · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.