×

Cyclic gradient based iterative algorithm for a class of generalized coupled Sylvester-conjugate matrix equations. (English) Zbl 1516.65032

Summary: This paper focuses on the numerical solution of a class of generalized coupled Sylvester-conjugate matrix equations, which are general and contain many significance matrix equations as special cases, such as coupled discrete-time/continuous-time Markovian jump Lyapunov matrix equations, stochastic Lyapunov matrix equation, etc. By introducing the modular operator, a cyclic gradient based iterative (CGI) algorithm is provided. Different from some previous iterative algorithms, the most significant improvement of the proposed algorithm is that less information is used during each iteration update, which is conducive to saving memory and improving efficiency. The convergence of the proposed algorithm is discussed, and it is verified that the algorithm converges for any initial matrices under certain assumptions. Finally, the effectiveness and superiority of the proposed algorithm are verified with some numerical examples.

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Tian, J. Y.; Zhao, X. Y.; Deng, F. Q., Incremental Newton’s iterative algorithm for optimal control of Itô stochastic systems, Appl. Math. Comput., 421, 126958 (2022) · Zbl 1510.93371
[2] Hajarian, M., Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative method, Appl. Math. Lett., 52, 87-95 (2016) · Zbl 1330.65065
[3] Shu, Z.; Lam, J.; Xiong, J. L., Static output-feedback stabilization of discrete-time Markovian jump linear systems: a system augmentation approach, Automatica, 46, 4, 687-694 (2010) · Zbl 1193.93149
[4] Ding, F., Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data, J. Comput. Appl. Math., 426, 115107 (2023) · Zbl 1518.93160
[5] Wu, A. G.; Qian, Y. Y.; Liu, Q. W., Stochastic stability for discrete-time antilinear systems with Markovian jumping parameters, IET Control Theory Appl., 9, 9, 1399-1410 (2015)
[6] Costa, O. L.V.; Fragoso, M. D., Stability results for discrete-time linear systems with Markovian jumping parameters, J. Math. Anal. Appl., 179, 1, 154-178 (1993) · Zbl 0790.93108
[7] Li, Z. Y.; Wang, Y.; Zhou, B.; Duan, G. R., On unified concepts of detectability and observability for continuous-time stochastic systems, Appl. Math. Comput., 217, 521-536 (2010) · Zbl 1207.93098
[8] Xu, L., Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length, Int. J. Control Autom. Syst., 20, 2, 432-443 (2022)
[9] Xu, L., Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window, Circuits, Syst., Signal Process., 41, 805-830 (2022) · Zbl 1509.94036
[10] Xie, Y. J.; Ma, C. F., Iterative methods to solve the generalized coupled Sylvester-conjugate matrix equations for obtaining the centrally symmetric (centrally antisymmetric) matrix solutions, J. Appl. Math., 2, 1-17 (2014) · Zbl 1442.65067
[11] Huang, N.; Ma, C. F., Modified conjugate gradient method for obtaining the minimum-norm solution of the generalized coupled Sylvester-conjugate matrix equations, Appl. Math. Model., 40, 1260-1275 (2016) · Zbl 1446.65021
[12] Ding, F.; Chen, T. W., On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44, 6, 2269-2284 (2006) · Zbl 1115.65035
[13] Ding, J.; Liu, Y. J.; Ding, F., Iterative solutions to matrix equations of the form \(A_i X B_i = F_i\), Comput. Math. Appl., 59, 11, 3500-3507 (2010) · Zbl 1197.15009
[14] Sheng, X. P., A relaxed gradient based algorithm for solving generalized coupled Sylvester matrix equations, J. Frankl. Inst., 355, 10, 4282-4297 (2018) · Zbl 1390.93305
[15] Zhang, H. M.; Ding, F., A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvestermatrix equations, J. Frankl. Inst., 351, 1, 340-357 (2014) · Zbl 1293.15006
[16] Ji, Y.; Chizeck, H. J., Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control, IEEE Trans. Autom. Control, 35, 7, 777-788 (1990) · Zbl 0714.93060
[17] Ding, F.; Chen, T. W., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control, 50, 8, 1216-1221 (2005) · Zbl 1365.65083
[18] Zhang, H. M.; Yin, H. C., New proof of the gradient-based iterative algorithm for a complex conjugate and transpose matrix equation, J. Frankl. Inst., 354, 16, 7585-7603 (2017) · Zbl 1373.93097
[19] Zhou, B.; Lam, J.; Duan, G. R., Gradient-based maximal convergence rate iterative method for solving linear matrix equations, Int. J. Comput. Math., 87, 3, 515-527 (2010) · Zbl 1188.65058
[20] Tian, Z. L.; Fan, C. M.; Deng, Y. J.; Wen, P. H., New explicit iteration algorithms for solving coupled continuous Markovian jump Lyapunov matrix equations, J. Frankl. Inst., 355, 17, 8346-8372 (2018) · Zbl 1402.93257
[21] Tian, Z. L.; Wang, J. X.; Dong, Y. H.; Liu, Z. Y., A multi-step smith-inner-outer iteration algorithm for solving coupled continuous Markovian jump Lyapunov matrix equations, J. Frankl. Inst., 357, 6, 3656-3680 (2020) · Zbl 1437.93128
[22] Wu, A. G.; Li, B.; Zhang, Y.; Duan, G. R., Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Appl. Math. Model., 35, 3, 1065-1080 (2011) · Zbl 1211.15024
[23] Wu, A. G.; Zeng, X. L.; Duan, G. R.; Wu, W. J., Iterative solutions to the extended Sylvester-conjugate matrix equations, Appl. Math. Comput., 217, 1, 130-142 (2010) · Zbl 1223.65032
[24] Wu, A. G.; Feng, G.; Duan, G. R.; Wu, W. J., Iterative solutions to coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 60, 1, 54-66 (2010) · Zbl 1198.65083
[25] Sheng, X. P.; Sun, W. W., The relaxed gradient based iterative algorithm for solving matrix equations \(A_i X B_i = F_i\), Comput. Math. Appl., 74, 3, 597-604 (2017) · Zbl 1382.65093
[26] Huang, B. H.; Ma, C. F., Gradient-based iterative algorithms for generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 75, 7, 2295-2310 (2018) · Zbl 1409.65024
[27] Huang, B. H.; Ma, C. F., The relaxed gradient-based iterative algorithms for a class of generalized coupled Sylvester-conjugate matrix equations, J. Frankl. Inst., 355, 6, 3168-3195 (2018) · Zbl 1395.65011
[28] Huang, B. H.; Ma, C. F., On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 74, 3, 532-555 (2017) · Zbl 1390.15050
[29] Huang, B. H.; Ma, C. F., An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled Sylvester-conjugate matrix equations, Numer. Algorithms, 78, 1271-1301 (2018) · Zbl 1445.15010
[30] Bayoumi, A., Finite iterative Hamiltonian solutions of the generalized coupled Sylvester-conjugate matrix equations, Trans. Inst. Meas. Control, 41, 4, 1-10 (2018)
[31] Tian, Z. L.; Tian, M.; Gu, C. Q.; Hao, X. N., An accelerated Jacobi gradient based iterative algorithm for solving Sylvester matrix equations, Filomat, 31, 2381-2390 (2017) · Zbl 1488.65099
[32] Wang, W. L.; Song, C. Q., A novel iterative method for solving coupled Sylvester-conjugate matrix equations and its application to nonlinear systems, J. Appl. Anal. Comput., 13, 1, 249-274 (2023) · Zbl 07919792
[33] Wang, W. L.; Song, C. Q., Iterative algorithms for discrete-time periodic Sylvester matrix equations and its application in antilinear periodic system, Appl. Numer. Math., 168, 251-273 (2021) · Zbl 1470.65070
[34] Chen, Z. B.; Chen, X. S., Modification on the convergence results of the Sylvester matrix equation \(A X + X B = C\), J. Frankl. Inst., 359, 7, 3126-3147 (2022) · Zbl 1492.65101
[35] Chen, Z. B.; Chen, X. S., Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations, J. Frankl. Inst., 359, 17, 9925-9951 (2022) · Zbl 07617721
[36] He, Z. H., Some new results on a system of Sylvester-type quaternion matrix equations, Linear Multilinear Algebra, 69, 16, 3069-3091 (2021) · Zbl 1481.15015
[37] He, Z. H.; Wang, X. X.; Zhao, Y. F., Eigenvalues of quaternion tensors with applications to color video processing, J. Sci. Comput., 94, 1 (2023) · Zbl 1504.15023
[38] Wang, X.; Dai, L.; Liao, D., A modified gradient based algorithm for solving Sylvester equations, Appl. Math. Comput., 218, 9, 5620-5628 (2012) · Zbl 1250.65063
[39] Ramadan, M.; Bayoumi, A., A modified gradient-based algorithm for solving extended Sylvester-conjugate matrix equations, Asian J. Control, 20, 1, 228-235 (2018) · Zbl 1391.93095
[40] Bayoumi, A.; Ramadan, M., An accelerated gradient-based iterative algorithm for solving extended Sylvester-conjugate matrix equations, Trans. Inst. Meas. Control, 40, 1, 341-347 (2018)
[41] Xie, Y. J.; Ma, C. F., The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation, Appl. Math. Comput., 273, 1257-1269 (2016) · Zbl 1410.65129
[42] Li, S. H.; Ma, C. F., Factor gradient iterative algorithm for solving a class of discrete periodic Sylvester matrix equations, J. Frankl. Inst., 359, 17, 9952-9970 (2022) · Zbl 1503.65086
[43] Tian, Z. L.; Li, X. K.; Xu, T. Y.; Liu, Z. Y., A relaxed MSIO iteration algorithm for solving coupled discrete Markovian jump Lyapunov equations, J. Frankl. Inst., 358, 6, 3051-3076 (2021) · Zbl 1464.93083
[44] Shafiei, S. G.; Hajarian, M., Developing Kaczmarz method for solving Sylvestermatrix equations, J. Frankl. Inst., 359, 16, 8991-9005 (2022) · Zbl 1503.65088
[45] Shafiei, S. G.; Hajarian, M., An iterative method based on ADMM for solving generalized Sylvester matrix equations, J. Frankl. Inst., 359, 15, 8155-8170 (2022) · Zbl 1508.65039
[46] Dehghan, M.; Shirilord, A., The double-step scale splitting method for solving complex Sylvester matrix equation, Comput. Appl. Math., 38, 146 (2019) · Zbl 1463.65089
[47] Dehghan, M.; Shirilord, A., Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method, Eng. Comput., 37, 489-508 (2021)
[48] Lv, L. L.; Chen, J. B.; Zhang, L.; Zhang, F. R., Gradient-based neural networks for solving periodic Sylvester matrix equations, J. Frankl. Inst., 359, 18, 10849-10866 (2022) · Zbl 1505.65178
[49] Xu, L.; Ding, F.; Zhu, Q. M., Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements, IEEE Trans. Instrum. Meas., 71, 1-13 (2022)
[50] Zhang, H. M., Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comput. Math. Appl., 77, 5, 1233-1244 (2019) · Zbl 1442.65071
[51] Zhang, H. M.; Yin, H. C., Refinements of the Hadamard and Cauchy-Schwarz inequalities with two inequalities of the principal angles, J. Math. Inequal., 13, 2, 423-435 (2019) · Zbl 1431.51011
[52] Xie, L.; Liu, Y. J.; Yang, H. Z., Gradient based and least squares based iterative algorithms for matrix equations \(A X B + C X^{T D} = F\), Appl. Math. Comput., 217, 5, 2191-2199 (2010) · Zbl 1210.65097
[53] Ding, F.; Zhang, H. M., Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, IET Control Theory Appl., 8, 15, 1588-1595 (2014)
[54] Zhnag, H. M., Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Comput. Math. Appl., 70, 8, 2049-2062 (2015) · Zbl 1443.65059
[55] Wang, Y. J.; Ding, F., Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model, Automatica, 71, 308-313 (2016) · Zbl 1343.93087
[56] Zhang, X.; Ding, F., Optimal adaptive filtering algorithm by using the fractional-order derivative, IEEE Signal Process. Lett., 29, 399-403 (2022)
[57] Zhou, Y. H.; Zhang, X.; Ding, F., Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models, Appl. Math. Comput., 414, 126663 (2022) · Zbl 1510.93338
[58] Ding, F.; Xu, L.; Zhang, X.; Zhou, Y. H., Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea, Int. J. Robust Nonlinear Control (2023) · Zbl 1532.93369
[59] Tian, Z. L.; Xu, T. Y., An SOR-type algorithm based on IO iteration for solving coupled discrete Markovian jump Lyapunov equations, Filomat, 35, 11, 3781-3799 (2021)
[60] Jiang, T. S.; Wei, M. S., On solutions of the matrix equations \(X - A X B = C\) and \(X - A \overline{X} B = C\), Linear Algebra Appl., 367, 225-233 (2003) · Zbl 1019.15002
[61] Zhou, K.; Doyle, J.; Glover, K., Robust and Optimal Control (1996), Prentice-Hall: Prentice-Hall United States · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.