×

Modified conjugate gradient method for obtaining the minimum-norm solution of the generalized coupled Sylvester-conjugate matrix equations. (English) Zbl 1446.65021

Summary: In this study, we consider the iteration solutions of the generalized coupled Sylvester-conjugate matrix equations: \(A_1 X + B_1 Y = D_1 \overline{X} E_1 + F_1\), \(A_2 Y + B_2 X = D_2 \overline{Y} E_2 + F_2\), where \(\overline{X}\) and \(\overline{Y}\) denote the conjugation of \(X\) and \(Y\), respectively. We propose a modified conjugate gradient method and give the convergence analysis based on the premise that the coupled matrix equations are consistent. The convergence theorem shows that a solution (\(X^*\), \(Y^*\)) can be obtained within finite iterative steps in the absence of round-off error for any initial value. Furthermore, we provide a method for choosing the initial matrices to obtain the minimum-norm solution of the problem. Finally, some numerical examples are given to demonstrate the behavior of the algorithms considered.

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Andrew, A., Eigenvectors of certain matrices, Linear Algebra Appl., 7, 157-162 (1973) · Zbl 0255.65021
[2] Chen, W.; Wang, X.; Zhong, T., The structure of weighting coefficient matrices of Harmonic differential quadrature and its application, Commun. Numer. Methods Eng., 12, 455-460 (1996) · Zbl 0860.65012
[3] Datta, L.; Morgera, S., Some results on matrix symmetries and a pattern recognition application, IEEE Trans. Signal Process., 34, 992-994 (1986)
[4] Weaver, J., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Monthly, 92, 711-717 (1985) · Zbl 0619.15021
[5] Datta, L.; Morgera, S., On the reducibility of centrosymmetric matrices-applications in engineering problems, Circ. Syst. Signal Process., 8, 71-96 (1989) · Zbl 0674.15005
[6] Delmas, J., On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process., 47, 1402-1406 (1999)
[7] Bai, Z.-J., The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl., 26, 1100-1114 (2005) · Zbl 1079.65043
[8] Wang, Q.-W., Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49, 641-650 (2005) · Zbl 1138.15003
[9] Wang, Q.-W.; Sun, J.-H.; Li, S.-Z., Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 353, 169-182 (2002) · Zbl 1004.15017
[10] Wang, Q.-W.; Zhang, F., The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 17, 88-101 (2008) · Zbl 1147.15012
[11] Wang, Q.-W.; Zhang, H. S.; Yu, S.-W., On solutions to the quaternion matrix equation \(A X B + C Y D = E\), Electron. J. Linear Algebra, 17, 343-358 (2008) · Zbl 1154.15019
[12] Wang, Q.-W.; Chang, H.-X.; Ning, Q., The common solution to six quaternion matrix equations with applications, Appl. Math. Comput., 198, 209-226 (2008) · Zbl 1141.15016
[13] Wang, Q.-W.; Li, C.-K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430, 1626-1640 (2009) · Zbl 1158.15010
[14] Zhou, B.; Duan, G.-R.; Li, Z.-Y., Gradient based iterative algorithm for solving coupled matrix equations, Syst. Contr. Lett., 58, 327-333 (2009) · Zbl 1159.93323
[15] Baksalary, J.-K.; Kala, R., The matrix equation \(A X B + C Y D = E\), Linear Algebra Appl., 30, 141-147 (1980) · Zbl 0437.15005
[16] Ciarlet, P.-G., Introduction to Numerical Linear Algebra and Optimisation (1989), Cambridge University Press: Cambridge University Press Cambridge
[17] Gu, C.-Q.; Qian, H.-J., Skew-symmetric methods for nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 223, 567-577 (2009) · Zbl 1159.65036
[18] Hua, D., On the symmetric solutions of linear matrix equations, Linear Algebra Appl., 131, 1-7 (1990) · Zbl 0712.15009
[19] Jbilou, K., Smoothing iterative block methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 107, 97-109 (1999) · Zbl 0929.65018
[20] Karimi, S.; Toutounian, F., The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides, Appl. Math. Comput., 177, 852-862 (2006) · Zbl 1096.65040
[21] Moreau, J.-J., Decomposition orthogonale \(d\)′un espace hilbertien selon deux cônes mutuellement polaires, C.R. Acad. Sci. Paris, 225, 238-240 (1962) · Zbl 0109.08105
[22] Mitra, S.-K., A pair of simultaneous linear matrix equations and a matrix programming problem, Linear Algebra Appl., 131, 97-123 (1990) · Zbl 0712.15010
[23] Song, C.-Q.; Chen, G.-L.; Zhao, L.-L., Iterative solutions to coupled Sylvester-transpose matrix equations, Appl. Math. Modell., 35, 4675-4683 (2011) · Zbl 1228.65071
[24] Shinozaki, N.; Sibuya, M., Consistency of a pair of matrix equations with an application, Keio Eng. Rep., 27, 141-146 (1974) · Zbl 0409.15010
[25] Trench, W.-F., Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 380, 199-211 (2004) · Zbl 1087.15013
[26] Trench, W.-F., Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 377, 207-218 (2004) · Zbl 1046.15028
[27] Trench, W.-F., Hermitian, Hermitian R-symmetric, and Hermitian R-skew symmetric procrustes problems, Linear Algebra Appl., 387, 83-98 (2004) · Zbl 1121.15016
[28] Trench, W.-F., Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices, Linear Algebra Appl., 389, 23-31 (2004) · Zbl 1059.15019
[29] Toutounian, F.; Karimi, S., Global least squares method (GL-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput., 178, 452-460 (2006) · Zbl 1100.65039
[30] Wang, Q.-W.; Sun, J.-H.; Li, S.-Z., Consistency for bi(skew) symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 353, 169-182 (2002) · Zbl 1004.15017
[31] Wierzbicki, A.-P.; Kurcyusz, S., Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space, SIAM J. Control Optim., 15, 25-56 (1977) · Zbl 0355.90045
[32] Xie, D.-X.; Sheng, Y.-P., The least-squares solutions of inconsistent matrix equation over symmetric and antipersymmetric matrices, Appl. Math. Lett., 16, 589-598 (2003) · Zbl 1047.65026
[33] Dehghan, M.; Hajarian, M., The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci., 43, 1580-1590 (2012) · Zbl 1308.65061
[34] Dehghan, M.; Hajarian, M., Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices, J. Vib. Control, 17, 1295-1298 (2011) · Zbl 1271.65076
[35] Dehghan, M.; Hajarian, M., On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations, Linear Multilin. Algebra, 59, 1281-1309 (2011) · Zbl 1242.65075
[36] Dehghan, M.; Hajarian, M., Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices, Bulletin Iranian Math. Soc., 40, 295-323 (2014) · Zbl 1306.65195
[37] Hashemi, B.; Dehghan, M., Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation, J. Comput. Appl. Math., 235, 2969-2978 (2011) · Zbl 1221.65087
[38] Hashemi, B.; Dehghan, M., Efficient computation of enclosures for the exact solvents of a quadratic matrix equation, Electron. J. Linear Algebra, 20, 519-536 (2010) · Zbl 1207.65043
[39] Dehghan, M.; Hajarian, M., On the generalized reflexive and anti-reflexive solutions to a system of matrix equations, Linear Algebra Appl., 437, 2793-2812 (2012) · Zbl 1255.15019
[40] Huang, N.; Ma, C. F., Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appl., 21, 761-780 (2014) · Zbl 1340.65074
[41] Huang, N.; Ma, C. F., The iteration solution of matrix equation AXB=C subject to a linear matrix inequality constraint, Abs. Appl. Anal., 2014, Article 705830 pp. (2014) · Zbl 1474.15039
[42] Huang, N.; Ma, C. F., The modified conjugate gradient methods for solving a class of the generalized coupled Sylvester-transpose matrix equations, Comput. Math. Appl., 67, 1545-1558 (2014) · Zbl 1350.65036
[43] Xie, Y. J.; Huang, N.; Ma, C. F., Iterative method to solve the generalized coupled sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Comput. Math. Appl., 67, 2071-2084 (2014) · Zbl 1362.65041
[44] Peng, Y.-X.; Hu, X.-Y.; Zhang, L., An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation \(A X B = C\), Appl. Math. Comput., 160, 763-777 (2005) · Zbl 1068.65056
[45] Huang, G.-X.; Yin, F.; Guo, K., An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation \(A X B = C\), J. Comput. Appl. Math., 212, 231-244 (2008) · Zbl 1146.65036
[46] Guo, K.-H.; Hu, X.-Y.; Zhang, L., A new iteration method for the matrix equation \(A X = B\), Appl. Math. Comput., 187, 1434-1441 (2007) · Zbl 1121.65043
[47] Peng, Z.-Y.; Wang, L.; Peng, J.-J., The solution of matrix equation \(A X = B\) over a matrix inequality constraint, SIAM J. Matrix Anal. Appl., 33, 554-568 (2012) · Zbl 1252.65084
[48] Li, F.-L.; Gong, L.-S.; Hu, X.-Y.; Zhang, L., Successive projection iterative method for solving matrix \(A X = B\), J. Comput. Appl. Math., 234, 2405-2410 (2010) · Zbl 1207.65044
[49] Li, J.-F.; Peng, Z.-Y.; Peng, J.-J., The bisymmetric solution of matrix equation \(A X = B\) over a matrix inequality constraint, Mathematica Numerica Sinica, 35, 137-150 (2013), (in Chinese) · Zbl 1299.65077
[50] Zhao, L.-J.; Hu, X.-Y.; Zhang, L., Least squares solutions to \(A X = B\) for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation, Linear Algebra Appl., 428, 871-880 (2008) · Zbl 1133.15016
[51] Deng, Y.-B.; Bai, Z.-Z.; Gao, Y.-H., Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl., 13, 801-823 (2006) · Zbl 1174.65382
[52] Ding, F.; Liu, P.-X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035
[53] Dehghan, M.; Hajarian, M., Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Appl. Math. Modell., 35, 3285-3300 (2011) · Zbl 1227.65037
[54] Dehghan, M.; Hajarian, M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Modell., 34, 639-654 (2010) · Zbl 1185.65054
[55] Wang, Q.-W., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384, 43-54 (2004) · Zbl 1058.15015
[56] Navarra, A.; Odell, P.-L.; Young, D.-M., A representation of the general common solution to the matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\) with applications, Comput. Math. Appl., 41, 929-935 (2001) · Zbl 0983.15016
[57] Mitra, S.-K., A pair of simultaneous linear matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\), Proc. Cambridge Philos. Soc., 74, 213-216 (1973) · Zbl 0262.15010
[58] Peng, Y.-X.; Hu, X.-Y.; Zhang, L., An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\), Appl. Math. Comput., 183, 1127-1137 (2006) · Zbl 1134.65032
[59] Cai, J.; Chen, G.-L., An iterative algorithm for the least squares bisymmetric solution of the matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\), Math. Comput. Model., 50, 1237-1244 (2009) · Zbl 1190.65061
[60] Liao, A.-P.; Lei, Y., Least-squares solution with the minimum-norm for the matrix equation \((A X B, G X H) = (C, D)\), Comput. Math. Appl., 50, 539-549 (2005) · Zbl 1087.65040
[61] Dehghan, M.; Hajarian, M., Construction of an iterative method for solving generalized coupled Sylvester matrix equations, Trans. Inst. Meas. Control, 35, 961-970 (2013)
[62] Dehghan, M.; Hajarian, M., The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra Appl., 432, 1531-1552 (2010) · Zbl 1187.65042
[63] Liang, K.-F.; Liu, J.-Z., Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations \(A_1 X B_1 + C_1 X^T D_1 = M_1,A_2 X B_2 + C_2 X^T D_2 = M_2\), Appl. Math. Comput., 218, 3166-3175 (2011) · Zbl 1250.65059
[64] Wu, A.-G.; Duan, G.-R.; Fu, Y.-M.; Wu, W.-J., Finite iterative algorithms for the generalized Sylvester-conjugate matrix equation \(A X + B Y = E \overline{X} F + S\), Computing, 89, 147-170 (2010) · Zbl 1226.65035
[65] Wu, A.-G.; Li, B.; Zhang, Y.; Duan, G.-R., Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Appl. Math. Modell., 35, 1065-1080 (2011) · Zbl 1211.15024
[66] Wu, A.-G.; Feng, G.; Hu, J.; Duan, G.-R., Closed-form solutions to the nonhomogeneous Yakubovich-conjugate matrix equation, Appl. Math. Appl., 214, 442-450 (2009) · Zbl 1176.15021
[67] Jiang, T.; Wei, M., On solutions of the matrix equations \(X - A X B = C\) and \(X - A \overline{X} B = C\), Linear Algebra Appl., 367, 225-233 (2003) · Zbl 1019.15002
[68] Wu, A.-G.; Fu, Y.-M.; Duan, G.-R., On solutions of the matrix equations \(V - A V F = B W\) and \(V - A \overline{V} F = B W\), Math. Comput. Modell., 47, 1181-1197 (2008) · Zbl 1145.15302
[69] Bevis, J.-H.; Hall, F.-J.; Hartwing, R.-E., Consimilarity and the matrix equation \(A \overline{X} - X B = C\), Current Trends in Matrix Theory, 51-64 (1987), North-Holland: North-Holland New York, (Auburn, Ala., 1986) · Zbl 0655.15012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.