×

Stability analysis of resonant rotation of a gyrostat in an elliptic orbit under third-and fourth-order resonances. (English) Zbl 1516.34065

Summary: This paper presents the stability of resonant rotation of a symmetric gyrostat under third- and fourth-order resonances, whose center of mass moves in an elliptic orbit in a central Newtonian gravitational field. The resonant rotation is a special planar periodic motion of the gyrostat about its center of mass, i. e., the body performs one rotation in absolute space during two orbital revolutions of its center of mass. The equations of motion of the gyrostat are derived as a periodic Hamiltonian system with three degrees of freedom and a constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. By analyzing the Floquet multipliers of the linearized equations of perturbed motion, the unstable region of the resonant rotation and the region of stability in the first-order approximation are determined in the dimensionless parameter plane. In addition, the third- and fourth-order resonances are obtained in the linear stability region and further nonlinear stability analysis is performed in the third- and fourth-order resonant cases.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C25 Periodic solutions to ordinary differential equations
70E17 Motion of a rigid body with a fixed point
70E50 Stability problems in rigid body dynamics
Full Text: DOI

References:

[1] Wittenburg, J., Dynamics of Multibody Systems (2008), Berlin: Springer, Berlin · Zbl 1131.70001
[2] Kane, T. R.; Likins, P. W.; Levinson, D. A., Spacecraft Dynamics (1983), London: McGraw-Hill, London · doi:10.1115/1.3167078
[3] Ge, Zh.-M.; Chen, H.-K., Improved Stability of a Dual-Spin Satellite in Circular Orbit, Jpn. J. Appl. Phys., 36, 2, 948-956 (1997)
[4] Sarychev, V. A.; Mirer, S. A., Relative Equilibria of a Gyrostat Satellite with Internal Angular Momentum along a Principal Axis, Acta Astronaut., 49, 11, 641-644 (2001) · doi:10.1016/S0094-5765(01)00083-2
[5] Sarychev, V. A.; Mirer, S. A.; Degtyarev, A. A., Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment in the Principal Plane of Inertia, Cosmic Research, 46, 1, 60-73 (2008) · doi:10.1134/S0010952508010085
[6] Sarychev, V. A., Dynamics of an Axisymmetric Gyrostat Satellite under the Action of Gravitational Moment, Cosmic Research, 48, 2, 188-193 (2010) · doi:10.1134/S0010952510020085
[7] Novikov, M. A., The Stability Boundaries of the Steady Motion of a Satellite with a Gyroscope, J. Appl. Math. Mech., 74, 2, 164-170 (2010) · Zbl 1272.70032 · doi:10.1016/j.jappmathmech.2010.05.006
[8] Gutnik, S. A.; Santos, L.; Sarychev, V. A.; Silva, A., Dynamics of a Gyrostat Satellite Subjected to the Action of Gravity Moment. Equilibrium Attitudes and Their Stability, J. Comput. Syst. Sci. Int., 54, 3, 469-482 (2015) · Zbl 1327.93294 · doi:10.1134/S1064230715030107
[9] Santos, L. F. F. M., Melicio, R., and Silva, A., Gyrostat Dynamics on a Circular Orbit: General Case of Equilibria Bifurcation and Analytical Expressions, in Proc. of the IEEE Internat. Symp. on Power Electronics, Electrical Drives and Motion (Amalfi, Italy, Jun 2018), pp. 1084-1088.
[10] Santos, L.; Melicio, R., Bifurcation of Equilibria for General Case of Gyrostat Satellite on a Circular Orbit, Aerosp. Sci. Technol., 105 (2020) · doi:10.1016/j.ast.2020.106058
[11] Morais, R. H.; Santos, L. F. F. M.; Silva, A. R. R.; Melicio, R., Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment Tangent to the Orbital Plane, Adv. Space Res., 69, 11, 3921-3940 (2022) · doi:10.1016/j.asr.2022.03.004
[12] Iñarrea, M.; Lanchares, V.; Pascual, A. I.; Elipe, A., On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat, Regul. Chaotic Dyn., 22, 7, 824-839 (2017) · Zbl 1437.70007 · doi:10.1134/S156035471707005X
[13] Iñarrea, M.; Lanchares, V.; Pascual, A. I.; Elipe, A., Stability of the Permanent Rotations of an Asymmetric Gyrostat in a Uniform Newtonian Field, Appl. Math. Comput., 293, 15, 404-415 (2017) · Zbl 1411.70004 · doi:10.1016/j.amc.2016.08.041
[14] Pascal, M., Attitude Equilibria of Dual Spin Satellites Subjected to Gravitational Torques of \(n\) Bodies, Celest. Mech. Dyn. Astron., 36, 4, 319-347 (1985) · Zbl 0579.70009 · doi:10.1007/BF01227488
[15] Tsogas, V.; Kalvouridis, T. J.; Mavraganis, A., Equilibrium States of a Gyrostat Satellite in an Annular Configuration of \(N\) Big Bodies, Acta Mech., 175, 181-195 (2005) · Zbl 1066.70017 · doi:10.1007/s00707-004-0189-8
[16] Kalvouridis, T. J., Stationary Solutions of a Small Gyrostat in the Newtonian Field of Two Bodies with Equal Masses, Nonlinear Dyn., 61, 3, 373-381 (2010) · Zbl 1204.70009 · doi:10.1007/s11071-010-9655-0
[17] Meng, Y.; Hao, R.; Chen, Q., Attitude Stability Analysis of a Dual-Spin Spacecraft in Halo Orbits, Acta Astronaut., 99, 318-329 (2014) · doi:10.1016/j.actaastro.2014.03.001
[18] Cochran, J. E.; Shu, P. H.; Rew, S. D., Attitude Motion of Asymmetric Dual-Spin Spacecraft, J. Guid. Control Dyn., 5, 1, 644-657 (1982) · Zbl 0541.70038 · doi:10.2514/3.56136
[19] Elipe, A.; Lanchares, V., Exact Solution of a Triaxial Gyrostat with One Rotor, Celest. Mech. Dyn. Astron., 101, 1-2, 49-68 (2008) · Zbl 1342.70014 · doi:10.1007/s10569-008-9129-6
[20] Aslanov, V. S., Integrable Cases in the Dynamics of Axial Gyrostats and Adiabatic Invariants, Nonlinear Dyn., 68, 1-2, 259-273 (2012) · Zbl 1315.70004 · doi:10.1007/s11071-011-0225-x
[21] Doroshin, A. V., Exact Solutions for Angular Motion of Coaxial Bodies and Attitude Dynamics of Gyrostat-Satellites, Int. J. Non-Linear Mech., 50, 68-74 (2013) · doi:10.1016/j.ijnonlinmec.2012.10.012
[22] Shchetinina, E. K., The Motion of a Symmetric Gyrostat with Two Rotors, J. Appl. Math. Mech., 80, 2, 121-126 (2016) · Zbl 1434.70009 · doi:10.1016/j.jappmathmech.2016.06.002
[23] Sazonov, V. V.; Troitskaya, A. V., Periodic Motions of a Gyrostat Satellite with a Large Gyrostatic Moment about the Center of Mass, J. Appl. Math. Mech., 79, 5, 416-425 (2015) · Zbl 1434.70008 · doi:10.1016/j.jappmathmech.2016.03.001
[24] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics (1978), Moscow: Nauka, Moscow · Zbl 1454.70002
[25] Markeyev, A. P., A Method for Analytically Representing Area-Preserving Mappings, J. Appl. Math. Mech., 78, 5, 435-444 (2014) · Zbl 1486.37025 · doi:10.1016/j.jappmathmech.2015.03.001
[26] Markeyev, A. P., A Constructive Algorithm for the Normalization of a Periodic Hamiltonian, J. Appl. Math. Mech., 69, 3, 323-337 (2005) · Zbl 1100.70520 · doi:10.1016/j.jappmathmech.2005.05.001
[27] Gustavson, F., On Constructing Formal Integrals of a Hamiltonian System Near an Equilibrium Point, Astron. J., 71, 8, 670-686 (1966) · doi:10.1086/110172
[28] Meyer, K.; Hall, G., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem (2017), Cham: Springer, Cham · Zbl 1372.70002 · doi:10.1007/978-3-319-53691-0
[29] Moser, J., New Aspects in the Theory of Stability of Hamiltonian Systems, Comm. Pure Appl. Math., 11, 1, 81-114 (1958) · Zbl 0082.40801 · doi:10.1002/cpa.3160110105
[30] Siegel, C. L.; Moser, J. K., Lectures on Celestial Mechanics (1971), New York: Springer, New York · Zbl 0312.70017 · doi:10.1007/978-3-642-87284-6
[31] Arnol’d, V. I., Mathematical Methods of Classical Mechanics (1997), New York: Springer, New York
[32] Markeev, A. P., On the Problem of Stability of Equilibrium Positions of Hamiltonian Systems, J. Appl. Math. Mech., 34, 6, 941-948 (1970) · Zbl 0233.70019 · doi:10.1016/0021-8928(70)90157-7
[33] Markeev, A. P., On the Stability of a Nonautonomous Hamiltonian System with Two Degrees of Freedom, J. Appl. Math. Mech., 33, 3, 550-557 (1969) · Zbl 0194.56503 · doi:10.1016/0021-8928(69)90071-9
[34] Vidal, C.; dos Santos, F., Stability of Equilibrium Positions of Periodic Hamiltonian Systems under Third and Fourth Order Resonances, Regul. Chaotic Dyn., 10, 1, 95-111 (2005) · Zbl 1076.37050 · doi:10.1070/RD2005v010n01ABEH000303
[35] Beletsky, V. V., On Satellite Libration, Artificial Earth Satellites, 13-31 (1959), Moscow: Akad. Nauk SSSR, Moscow
[36] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass (1966), Jerusalem: Israel Program for Scientific Translations, Jerusalem
[37] Khentov, A. A., On Rotational Motion of a Satellite, Kosmicheskie Issledovaniya, 22, 1, 130-131 (1984)
[38] Markeev, A. P.; Bardin, B. S., A Planar, Rotational Motion of a Satellite in an Elliptic Orbit, Cosmic Research, 32, 6, 583-589 (1994)
[39] Bardin, B. S.; Chekina, E. A.; Chekin, A. M., On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit, Regul. Chaotic Dyn., 20, 1, 63-73 (2015) · Zbl 1325.70032 · doi:10.1134/S1560354715010050
[40] Bardin, B. S.; Chekina, E. A., On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit, Regul. Chaotic Dyn., 21, 4, 377-389 (2016) · Zbl 1360.70035 · doi:10.1134/S1560354716040018
[41] Celletti, A.; Sidorenko, V., Some Properties of the Dumbbell Satellite Attitude Dynamics, Celest. Mech. Dyn. Astron., 101, 1-2, 105-126 (2008) · Zbl 1342.70024 · doi:10.1007/s10569-008-9122-0
[42] Zhong, X.; Zhao, J.; Yu, K.; Xu, M., On the Stability of Periodic Motions of a Two-Body System with Flexible Connection in an Elliptical Orbit, Nonlinear Dyn., 104, 4, 3479-3496 (2021) · doi:10.1007/s11071-021-06516-x
[43] Lyapunov, A. M., The General Problem of the Stability of Motion, Int. J. Control, 55, 3, 531-773 (1992) · Zbl 0786.70001 · doi:10.1080/00207179208934253
[44] dos Santos, F.; Vidal, C., Stability of Equilibrium Solutions of Autonomous and Periodic Hamiltonian Systems in the Case of Multiple Resonances, J. Differ. Equ., 258, 11, 3880-3901 (2015) · Zbl 1333.37075 · doi:10.1016/j.jde.2015.01.044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.