×

Introducing a new intrinsic metric. (English) Zbl 1515.51012

P. Hariri et al. [Conformally invariant metrics and quasiconformal mappings. Cham: Springer (2020; Zbl 1450.30003)] have singled out properties of the hyperbolic metric (one of them being the property that closures of the balls never intersect the boundary of the domain on which they are defined) and have called generalizations of the hyperbolic metric that fulfills those properties hyperbolic type metrics. Any metric whose values are affected by the boundary of the domain is referred to as an intrinsic metric, regardless whether it has also the other properties of a hyperbolic type metric or not.
This paper introduces a new intrinsic metric, called the \(t\)-metric, proves sharp inequalities between it and the most common hyperbolic type metrics, for several domains \(G\subseteq {\mathbb R}^n\), studies its behaviour under a few examples of conformal and quasiconformal mappings, and looks, by omputational and analytical means, at the differences between the balls defined by the metrics considered.
The \(t\)-metric is defined on any non-empty, open, proper and connected subset \(G\) of a metric space \(X\). Given a metric \(\eta_G\) defined in the closure of \(G\) and denoting \(\eta_G(x) = \eta_G(x, \partial G) = \inf\{\eta_G(x, z)\, |\, z \in \partial G\}\) for all \(x\in G\), one lets \(t_G : G\times G\rightarrow [0, 1]\) be defined, for all \(x, y\in G\), by \[ t_G(x, y) =\frac{\eta_G(x, y)}{\eta_G(x, y) + \eta_G(x) + \eta_G(y)}. \] The focus is on \(t\)-metrics associated with \(G\subseteq {\mathbb R}^n\) with \(\eta_G\) being the Euclidean distance. The \(t\)-metric does not have the property about the closed balls not intersecting with the boundary, so it is not a hyperbolic type metric.

MSC:

51M10 Hyperbolic and elliptic geometries (general) and generalizations
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

Citations:

Zbl 1450.30003

References:

[1] Anderson,G., Vamanamurthy,M., Vuorinen,M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, 1997 · Zbl 0885.30012
[2] Beardon,A.F., Minda,D.: The hyperbolic metric and geometric function theory. In: Ponnusamy, S., Sugawa, T., Vuorinen, M. (eds.) Proceedings of International Workshop on Quasiconformal Mappings and their Applications (IWQCMA05), pp. 9-56 (2006) · Zbl 1208.30001
[3] Chen, J.; Hariri, P.; Klén, R.; Vuorinen, M., Lipschitz conditions, triangular ratio metric, and quasiconformal maps, Ann. Acad. Sci. Fenn. Math., 40, 683-709 (2015) · Zbl 1374.30069 · doi:10.5186/aasfm.2015.4039
[4] Fujimura, M.; Mocanu, M.; Vuorinen, M., Barrlund’s distance function and quasiconformal maps, Complex Var. Elliptic Equ., 66, 1225-1255 (2021) · Zbl 1476.30094 · doi:10.1080/17476933.2020.1751137
[5] Gehring,F.W., Hag,K.: The ubiquitous quasidisk. With contributions by Ole Jacob Broch. Mathematical Surveys and Monographs, 184. American Mathematical Society, Providence, RI, 2012 · Zbl 1267.30003
[6] Gehring, FW; Osgood, BG, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math., 36, 50-74 (1979) · Zbl 0449.30012 · doi:10.1007/BF02798768
[7] Hariri,P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer (2020) · Zbl 1450.30003
[8] Hariri, P.; Vuorinen, M.; Zhang, X., Inequalities and bilipschitz conditions for triangular ratio metric, Rocky Mount. J. Math., 47, 4, 1121-1148 (2017) · Zbl 1376.30019 · doi:10.1216/RMJ-2017-47-4-1121
[9] Hästö, P., A new weighted metric, the relative metric I, J. Math. Anal. Appl., 274, 38-58 (2002) · Zbl 1019.54011 · doi:10.1016/S0022-247X(02)00219-6
[10] Ibragimov, Z.; Mohapatra, M.; Sahoo, S.; Zhang, X., Geometry of the Cassinian metric and its inner metric, Bull. Malays. Math. Sci. Soc., 40, 1, 361-372 (2017) · Zbl 1366.30007 · doi:10.1007/s40840-015-0246-6
[11] Mohapatra, M.; Sahoo, S., A Gromov hyperbolic metric vs the hyperbolic and other related metrics, Comput. Methods Funct. Theory, 18, 3, 473-493 (2018) · Zbl 1402.30039 · doi:10.1007/s40315-018-0233-7
[12] Rainio, O., Intrinsic quasi-metrics, Bull. Malays. Math. Sci. Soc., 44, 2873-2891 (2021) · Zbl 1476.51019 · doi:10.1007/s40840-021-01089-9
[13] Rainio,O., Vuorinen,M.: Triangular ratio metric in the unit disk. Complex Var. Elliptic Equ. (to appear). doi:10.1080/17476933.2020.1870452 · Zbl 1494.30046
[14] Rainio, O., Vuorinen, M.: Triangular Ratio Metric Under Quasiconformal Mappings In Sector Domains. Comput. Methods Func. Theory (to appear) Arxiv, 2005.11990
[15] Väisälä,J.: Lectures on \(n\)-dimensional quasiconformal mappings. Lecture Notes in Math, Vol. 229. Springer (1971) · Zbl 0221.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.