×

Homogenization of a nonlinear strongly coupled model of magnetorheological fluids. (English) Zbl 1515.35035

The authors consider a simply connected and bounded domain \(\Omega \subset \mathbb{R}^{d}\), \(d\geq 2\), of class \(C^{1,1}\), and the unit cell \( Y=(0,1)^{d}\) in \(\mathbb{R}^{d}\), which is decomposed into \(Y=Y_{s}\cup Y_{f}\cup \Gamma \), where \(Y_{s}\) represents the magnetic inclusion and \( Y_{f}\) the fluid domain which are open sets in \(\mathbb{R}^{d}\), and \(\Gamma \) is the closed \(C^{1,1}\)-interface between them. They deduce a decomposition of \(\Omega \) into its fluid part \(\Omega_{f}^{\varepsilon}\), its solid part \(\Omega_{s}^{\varepsilon}\) and the interface \(\Gamma^{\varepsilon}\) through a periodicity process, with \(\varepsilon >0\).
The purpose of the paper is to describe the homogenization of the nonlinear system modeling a suspension of rigid inclusions in a nonconducting carrier fluid and written as: \[ \begin{aligned} \rho_{f}(\frac{\partial u^{\varepsilon}}{\partial t} +(u^{\varepsilon}\cdot \nabla )u^{\varepsilon})-\operatorname{div}\sigma^{\varepsilon}=\rho_{f}g,\ \operatorname{div}u^{\varepsilon}=0,\ \operatorname{curl}H^{\varepsilon}=0 \text{ in }\Omega_{f}^{\varepsilon},\\ \mathbb{D}(u^{\varepsilon})=0, \ \frac{\partial B^{\varepsilon}}{\partial t}+\frac{1}{\nu_{es}} \operatorname{curl\ curl} H^{\varepsilon}=\operatorname{curl}(u^{\varepsilon}\times B^{\varepsilon}) \text{ in }\Omega_{s}^{\varepsilon}, \end{aligned} \] where \(\rho_{f}\) is the (mass) fluid density, \(\rho_{s}\) the density of inclusions, \(\nu_{es}\) the electric conductivity of inclusions, \(g\) the external force field, \(u^{\varepsilon}\) the fluid velocity, \(\sigma \) the Cauchy stress tensor which depends on the velocity and on the fluid pressure \(p^{\varepsilon}\), \(B^{\varepsilon}\) the divergence-free magnetic field, and \(H^{\varepsilon}\) the magnetizing field which is linked to the magnetic field through \(B^{\varepsilon}=\mu H^{\varepsilon}\) in \(\Omega \), \(\mu \) being the magnetic permeability equal to some \(\mu_{f}\) in \(\Omega_{f}^{\varepsilon}\) and to some \(\mu_{s}\) in \(\Omega_{s}^{\varepsilon}\).
In the main part of the paper, the authors prove the existence of a unique solution \(u^{\varepsilon}\in H_{0}^{1}(\Omega;\mathbb{R}^{d})\), \(p^{\varepsilon}\in L_{0}^{2}(\Omega )\), \(B^{\varepsilon}\in H_{n}^{1}(\Omega;\mathbb{R}^{d})\) to a modified problem derived from the preceding one through a change of variables, under appropriate hypotheses on the data. They prove that \(u^{\varepsilon},B^{\varepsilon}\) two-scale converge to \(u^{0},B^{0}\) in \(H^{1}(\Omega; \mathbb{R}^{d})\) and that \(p^{\varepsilon}\) two-scale converges to \(p^{0}\) in \(L_{0}^{2}(\Omega )\), and they derive the limit problem which involves an elliptic fourth-rank tensor \(\mathcal{N}\) and two constant, symmetric and elliptic matrices \(\mathcal{M}\) and \(\mathcal{E}\). For the proof, the authors build a variational formulation of the problem, from which they derive uniform estimates on the solution. They finally use the properties of the two-scale convergence that they recall.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q30 Navier-Stokes equations
74E30 Composite and mixture properties
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M50 Homogenization applied to problems in fluid mechanics
78M40 Homogenization in optics and electromagnetic theory

References:

[1] Acosta, G. and Durán, R. G., Divergence Operator and Related Inequalities, , Springer, New York, 2017, doi:10.1007/978-1-4939-6985-2. · Zbl 1394.35001
[2] Acosta, G., Durán, R. G., and Muschietti, M. A., Solutions of the divergence operator on John domains, Adv. Math., 206 (2006), pp. 373-401, doi:10.1016/j.aim.2005.09.004. · Zbl 1142.35008
[3] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482-1518, doi:10.1137/0523084. · Zbl 0770.35005
[4] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20 (1972), pp. 179-192, doi:10.1007/BF01436561. · Zbl 0258.65108
[5] Bella, P. and Oschmann, F., Inverse of Divergence and Homogenization of Compressible Navier-Stokes Equations in Randomly Perforated Domains, preprint, arXiv:2103.04323, 2021.
[6] Benešová, B., Forster, J., Liu, C., and Schlömerkemper, A., Existence of weak solutions to an evolutionary model for magnetoelasticity, SIAM J. Math. Anal., 50 (2018), pp. 1200-1236, doi:10.1137/17M1111486. · Zbl 1390.74059
[7] Berlyand, L., Gorb, Y., and Novikov, A., Fictitious fluid approach and anomalous blow-up of the dissipation rate in a two-dimensional model of concentrated suspensions, Arch. Ration. Mech. Anal., 193 (2009), pp. 585-622, doi:10.1007/s00205-008-0152-2. · Zbl 1170.76055
[8] Berlyand, L. and Khruslov, E., Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid, SIAM J. Appl. Math., 64 (2004), pp. 1002-1034, doi:10.1137/S0036139902403913. · Zbl 1054.76081
[9] Berlyand, L. and Rybalko, V., Getting Acquainted with Homogenization and Multiscale, , Birkhäuser, Basel, 2018, doi:10.1007/978-3-030-01777-4. · Zbl 1441.35001
[10] Boffi, D., Brezzi, F., and Fortin, M., Mixed Finite Element Methods and Applications, , Springer, Heidelberg, 2013, doi:10.1007/978-3-642-36519-5. · Zbl 1277.65092
[11] Bourgeat, A., Mikelić, A., and Wright, S., Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), pp. 19-51. · Zbl 0808.60056
[12] Boyer, F. and Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, , Springer, New York, 2013, doi:10.1007/978-1-4614-5975-0. · Zbl 1286.76005
[13] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York, 2011, doi:10.1007/978-0-387-70914-7. · Zbl 1220.46002
[14] Cioranescu, D. and Donato, P., An Introduction to Homogenization, , Oxford University Press, Oxford, 1999. · Zbl 0939.35001
[15] Dang, T., Gorb, Y., and Jiménez Bola nos, S., Global Gradient Estimate for a Divergence Problem and Its Application to the Homogenization of a Magnetic Suspension, preprint, arXiv:2108.07775, 2021.
[16] Dang, T., Gorb, Y., and Jiménez Bolanos, S., Homogenization of nondilute suspension of viscous fluid with magnetic particles, SIAM J. Appl. Math., 81 (2021), pp. 2547-2568, doi:10.1137/21M1413833. · Zbl 1481.76167
[17] Davidson, P. A., An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, United Kingdom, 2001, doi:10.1017/CBO9780511626333. · Zbl 0974.76002
[18] Desvillettes, L., Golse, F., and Ricci, V., The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008), pp. 941-967, doi:10.1007/s10955-008-9521-3. · Zbl 1154.76018
[19] Duerinckx, M., Effective Viscosity of Random Suspensions Without Uniform Separation, preprint, arXiv:2008.13188, 2021.
[20] Duerinckx, M. and Gloria, A., On Einstein’s Effective Viscosity Formula, preprint, arXiv:2008.03837, 2020
[21] Duerinckx, M. and Gloria, A., Corrector equations in fluid mechanics: Effective viscosity of colloidal suspensions, Arch. Ration. Mech. Anal., 239 (2021), pp. 1025-1060, doi:10.1007/s00205-020-01589-1. · Zbl 1456.76134
[22] Duerinckx, M. and Gloria, A., Quantitative Homogenization Theory for Random Suspensions in Steady Stokes Flow, preprint, arXiv:2103.06414, 2021.
[23] Duerinckx, M. and Gloria, A., Sedimentation of Random Suspensions and the Effect of Hyperuniformity, preprint, arXiv:2004.03240, 2021.
[24] Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 324 (1906), pp. 289-306, doi:10.1002/andp.19063240204. · JFM 37.0811.01
[25] Eringen, A. C. and Maugin, G. A., Electrodynamics of Continua II: Fluids and Complex Media, Springer, New York, 2011.
[26] Francfort, G. A., Gloria, A., and Lopez-Pamies, O., Enhancement of elasto-dielectrics by homogenization of active charges, J. Math. Pures Appl.,156 (2021), pp. 392-419, doi:10.1016/j.matpur.2021.10.002. · Zbl 1483.35016
[27] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed., , Springer, New York, 2011, doi:10.1007/978-0-387-09620-9. · Zbl 1245.35002
[28] Garcke, H., Knopf, P., Mitra, S., and Schlömerkemper, A., Strong Well-Posedness, Stability and Optimal Control Theory for a Mathematical Model for Magneto-Viscoelastic Fluids, preprint, arXiv:2108.03094, 2021.
[29] Gérard-Varet, D. and Hillairet, M., Analysis of the viscosity of dilute suspensions beyond Einstein’s formula, Arch. Ration. Mech. Anal., 238 (2020), pp. 1349-1411, doi:10.1007/s00205-020-01567-7. · Zbl 1454.76101
[30] Gerbeau, J.-F., Bris, C. L., and Lelièvre, T., Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006. · Zbl 1107.76001
[31] Girault, V. and Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Berlin, Heidelberg, 1986, doi:10.1007/978-3-642-61623-5. · Zbl 0585.65077
[32] Gonzalez, O. and Stuart, A. M., A First Course in Continuum Mechanics, , Cambridge University Press, Cambridge, 2008, doi:10.1017/CBO9780511619571. · Zbl 1143.74001
[33] Gorb, Y., Maris, F., and Vernescu, B., Homogenization for rigid suspensions with random velocity-dependent interfacial forces, J. Math. Anal. Appl., 420 (2014), pp. 632-668, doi:10.1016/j.jmaa.2014.05.015. · Zbl 1302.76192
[34] Grün, G. and Weiß, P., On the field-induced transport of magnetic nanoparticles in incompressible flow: Modeling and numerics, Math. Models Methods Appl. Sci., 29 (2019), pp. 2321-2357, doi:10.1142/S0218202519500477. · Zbl 1425.35151
[35] Grün, G. and Weiß, P., On the field-induced transport of magnetic nanoparticles in incompressible flow: Existence of global solutions, J. Math. Fluid Mech., 23 (2021), 10, doi:10.1007/s00021-020-00523-5. · Zbl 1459.35317
[36] Guermond, J.-L. and Minev, P. D., Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case, Numer. Methods Partial Differential Equations, 19 (2003), pp. 709-731, doi:10.1002/num.10067. · Zbl 1037.76034
[37] Gunzburger, M. D., Meir, A. J., and Peterson, J. S., On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56 (1991), pp. 523-563. · Zbl 0731.76094
[38] Haines, B. M. and Mazzucato, A. L., A proof of Einstein’s effective viscosity for a dilute suspension of spheres, SIAM J. Math. Anal., 44 (2012), pp. 2120-2145, doi:10.1137/100810319. · Zbl 1284.35339
[39] Heida, M., An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), pp. 1-30. · Zbl 1230.60010
[40] Heida, M., Neukamm, S., and Varga, M., Stochastic two-scale convergence and young measures, Netw. Heterog. Media17 (2022), pp. 227-254, doi:10.3934/nhm.2022004. · Zbl 1493.74101
[41] Höfer, R. M., Sedimentation of inertialess particles in Stokes flows, Comm. Math. Phys., 360 (2018), pp. 55-101, doi:10.1007/s00220-018-3131-y. · Zbl 1391.76122
[42] Höfer, R. M., Prange, C., and Sueur, F., Motion of Several Slender Rigid Filaments in a Stokes Flow, preprint, arXiv:2106.03447, 2021.
[43] Lévy, T. and Hsieh, R. K. T., Homogenization mechanics of a non-dilute suspension of magnetic particles, Internat. J. Engrg. Sci., 26 (1988), pp. 1087-1097, doi:10.1016/0020-7225(88)90067-5. · Zbl 0659.76012
[44] Lévy, T. and Sanchez-Palencia, É., Suspension of solid particles in a Newtonian fluid, J. Non-Newton. Fluid Mech., 13 (1983), pp. 63-78, doi:10.1016/0377-0257(83)85022-8. · Zbl 0538.76103
[45] Lévy, T. and Sánchez-Palencia, E., Einstein-like approximation for homogenization with small concentration. II. Navier-Stokes equation, Nonlinear Anal., 9 (1985), pp. 1255-1268, doi:10.1016/0362-546X(85)90034-3. · Zbl 0581.76097
[46] Mecherbet, A., Sedimentation of particles in Stokes flow, Kinet. Relat. Models, 12 (2019), pp. 995-1044, doi:10.3934/krm.2019038. · Zbl 1420.35254
[47] Neuringer, J. L. and Rosensweig, R. E., Ferrohydrodynamics, Phys. Fluids, 7 (1964), pp. 1927-1937, doi:10.1063/1.1711103.
[48] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608-623, doi:10.1137/0520043. · Zbl 0688.35007
[49] Niethammer, B. and Schubert, R., A local version of Einstein’s formula for the effective viscosity of suspensions, SIAM J. Math. Anal., 52 (2020), pp. 2561-2591, doi:10.1137/19M1251229. · Zbl 1473.35454
[50] Nika, G. and Vernescu, B., Multiscale modeling of magnetorheological suspensions, Z. Angew. Math. Phys., 71 (2020), 14, doi:10.1007/s00033-019-1238-4. · Zbl 1451.35135
[51] Nochetto, R. H., Salgado, A. J., and Tomas, I., The equations of ferrohydrodynamics: Modeling and numerical methods, Math. Models Methods Appl. Sci., 26 (2016), pp. 2393-2449, doi:10.1142/S0218202516500573. · Zbl 1416.76347
[52] Nochetto, R. H., Trivisa, K., and Weber, F., On the dynamics of ferrofluids: Global weak solutions to the Rosensweig system and rigorous convergence to equilibrium, SIAM J. Math. Anal., 51 (2019), pp. 4245-4286, doi:10.1137/18M1224957. · Zbl 1428.35393
[53] Odenbach, S., Ferrofluids. Magnetically Controllable Fluids and Their Applications, Springer Berlin, Heidelberg, 2002, doi:10.1007/3-540-45646-5.
[54] Schlömerkemper, A. and Žabenský, J., Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows, Nonlinearity, 31 (2018), pp. 2989-3012, doi:10.1088/1361-6544/aaba36. · Zbl 1397.35226
[55] Schötzau, D., Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96 (2004), pp. 771-800, doi:10.1007/s00211-003-0487-4. · Zbl 1098.76043
[56] Tartar, L., The General Theory of Homogenization, , Springer, Berlin, 2009, doi:10.1007/978-3-642-05195-1. · Zbl 1188.35004
[57] Vernescu, B., Multiscale analysis of electrorheological fluids, Internat. J. Modern Phys. B, 16 (2002), 2643, doi:10.1142/S0217979202012785. · Zbl 1073.76081
[58] Zhikov, V. V. and Pyatnitski, A. L., Homogenization of random singular structures and random measures, Izv. Ross. Akad. Nauk Ser. Mat., 70 (2006), pp. 23-74, doi:10.1070/IM2006v070n01ABEH002302. · Zbl 1113.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.