×

Analysis of the viscosity of dilute suspensions beyond Einstein’s formula. (English) Zbl 1454.76101

Summary: We provide a mathematical analysis of the effective viscosity of suspensions of spherical particles in a Stokes flow, at low solid volume fraction \(\phi\). Our objective is to go beyond Einstein’s approximation \(\mu_{eff} = (1 + \frac{5}{2} \phi) \mu\). Assuming a lower bound on the minimal distance between the \(N\) particles, we are able to identify the \(O(\phi^2)\) correction to the effective viscosity, which involves pairwise particle interactions. Applying the methodology developped over the last years on Coulomb gases, we are able to tackle the limit \(N \rightarrow +\infty\) of the \(O(\phi^2)\)-correction, and provide an explicit formula for this limit when the particles centers can be described by either periodic or stationary ergodic point processes.

MSC:

76T20 Suspensions
76D07 Stokes and related (Oseen, etc.) flows
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

References:

[1] Almog, Y., Brenner, H.: Global homogenization of a dilute suspension of spheres. arXiv:2003.01480 · Zbl 1147.76305
[2] Ammari, H.; Garapon, P.; Kang, H.; Lee, H., Effective viscosity properties of dilute suspensions of arbitrarily shaped particles, Asymptot. Anal., 80, 3-4, 189-211 (2012) · Zbl 1341.76033
[3] Basson, A.; Gérard-Varet, D., Wall laws for fluid flows at a boundary with random roughness, Commun. Pure Appl. Math., 61, 7, 941-987 (2008) · Zbl 1179.35207
[4] Batchelor, G., An Introduction to Fluid Dynamics (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 0152.44402
[5] Batchelor, G.; Green, J., The determination of the bulk stress in a suspension of spherical particles at order \(c^2\), J. Fluid Mech., 56, 401-427 (1972) · Zbl 0246.76108
[6] Batchelor, G.; Green, J., The hydrodynamic interaction of two small freely moving spheres in a linear flow field, J. Fluid Mech., 56, 375-400 (1972) · Zbl 0247.76088
[7] Beliaev, AY; Kozlov, SM, Darcy equation for random porous media, Commun. Pure Appl. Math., 49, 1, 1-34 (1996) · Zbl 0853.76087
[8] Blaszczyszyn, B.: Lecture notes on random geometric models—random graphs, point processes and stochastic geometry. Preprint HAL cel-01654766
[9] Borodin, A.; Serfaty, S., Renormalized energy concentration in random matrices, Commun. Math. Phys., 320, 1, 199-244 (2013) · Zbl 1276.60007
[10] Chemin, J.-Y.: Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie · Zbl 0927.76002
[11] Clausius, R., Die mechanische Behandlung der Elektricität (1879), Braunshweig: Vieweg, Braunshweig
[12] Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Orocesses. Vol. II. Probability and Its Applications (New York). Springer, New York, second edition, 2008. General theory and structure · Zbl 1159.60003
[13] Desvillettes, L.; Golse, F.; Ricci, V., The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131, 5, 941-967 (2008) · Zbl 1154.76018
[14] Duerinckx, M.; Gloria, A., Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius-Mossotti formulas, Arch. Ration. Mech. Anal., 220, 1, 297-361 (2016) · Zbl 1339.35023
[15] Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Physik., 19, 289-306 (1906) · JFM 37.0811.01
[16] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Volume 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1994. Linearized steady problems · Zbl 0949.35004
[17] Gamblin, P.; Saint Raymond, X., On three-dimensional vortex patches, Bull. Soc. Math. France, 123, 3, 375-424 (1995) · Zbl 0844.76013
[18] Guazelli, E.; Morris, J., A Physical Introduction to Suspension Dynamics (2011), Cambridge: Cambridge University Press, Cambridge
[19] Haines, BM; Mazzucato, AL, A proof of Einstein’s effective viscosity for a dilute suspension of spheres, SIAM J. Math. Anal., 44, 3, 2120-2145 (2012) · Zbl 1284.35339
[20] Hasimoto, H., On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5, 317-328 (1959) · Zbl 0086.19901
[21] Hillairet, M., Wu, D.: Effective Viscosity of a Polydispersed Suspension (2019). arXiv:1905.12306 · Zbl 1441.35197
[22] Hinch, E., An averaged-equation approach to particle interactions in a fluid suspension, J. Fluid Mech., 83, 695-720 (1977) · Zbl 0374.76038
[23] Höfer, RM, Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., 360, 1, 55-101 (2018) · Zbl 1391.76122
[24] Höfer, RM; Velázquez, JJL, The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains, Arch. Ration. Mech. Anal., 227, 3, 1165-1221 (2018) · Zbl 1384.35089
[25] Jabin, P-E; Otto, F., Identification of the dilute regime in particle sedimentation, Commun. Math. Phys., 250, 2, 415-432 (2004) · Zbl 1059.76073
[26] Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994. Translated from the Russian by G. A. Yosifian · Zbl 0838.35001
[27] Keller, J.; Rubenfeld, L., Extremum principles for slow viscous flows with applications to suspensions, J. Fluid Mech., 30, 97-125 (1967) · Zbl 0152.45101
[28] Lévy, T.; Sánchez-Palencia, E., Einstein-like approximation for homogenization with small concentration. II. Navier-Stokes equation, Nonlinear Anal., 9, 11, 1255-1268 (1985) · Zbl 0581.76097
[29] Maxwell, J., A Treatise on Electricity and Magnetism (1881), Oxford: Clarendon Press, Oxford
[30] Mecherbet, A.: Sedimentation of particles in Stokes flow, 2018. arXiv:1806.07795 · Zbl 1420.35254
[31] Métivier, G.: Intégrales singulières, cours DEA. https://www.math.u-bordeaux.fr/ gmetivie/ISf.pdf 1981 (revised 2005)
[32] Mossotti, O., Discussione analitica sul’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso, Mem. Mat. Fis. della Soc. Ital. di Sci. in Modena, 24, 49-74 (1850)
[33] Niethammer, B., Schubert, R.: A local version of Einstein’s formula for the effective viscosity of suspensions. arXiv:1903.08554 · Zbl 1473.35454
[34] Nunan, K.; Keller, J., Effective viscosity of a periodic suspension, J. Fluid Mech., 142, 269-287 (1984) · Zbl 0595.76104
[35] O’brien, R., A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech., 91, 1, 17-39 (1979) · Zbl 0405.76005
[36] Rougerie, N.; Serfaty, S., Higher-dimensional Coulomb gases and renormalized energy functionals, Commun. Pure Appl. Math., 69, 3, 519-605 (2016) · Zbl 1338.82043
[37] Saito, N., Concentration dependence of the viscosity of high polymer solutions. i, J. Phys. Soc. Jpn., 5, 1, 4-8 (1950)
[38] Sánchez-Palencia, E., Einstein-like approximation for homogenization with small concentration. I. Elliptic problems, Nonlinear Anal., 9, 11, 1243-1254 (1985) · Zbl 0538.76086
[39] Sandier, E.; Serfaty, S., From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313, 3, 635-743 (2012) · Zbl 1252.35034
[40] Sandier, E.; Serfaty, S., 2D Coulomb gases and the renormalized energy, Ann. Probab., 43, 4, 2026-2083 (2015) · Zbl 1328.82006
[41] Serfaty, S., Coulomb Gases and Ginzburg-Landau Vortices. Zurich Lectures in Advanced Mathematics (2015), Zürich: European Mathematical Society (EMS), Zürich · Zbl 1335.82002
[42] Zuzovsky, M.; Adler, P.; Brenner, H., Spatially periodic suspensions of convex particles in linear shear flows. iii. dilute arrays of spheres suspended in newtonian fluids, Phys. Fluids, 26, 1714 (1983) · Zbl 0622.76114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.