×

\((k,\psi)\)-Hilfer variational problem. (English) Zbl 1515.26014

Summary: In this paper, we study variational structure for the \((k,\psi )\)-Hilfer fractional derivative operator. We investigate some properties of \((k,\psi )\)-Hilfer fractional integral and derivative which are used of variational structure. Also, using variational methods and critical point theory, we study the existence of solutions to a problem with \((k,\psi )\)-Hilfer fractional derivative. Our work extent and improve some recent works in the literature.

MSC:

26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Agrawal, O.P., Tenreiro-Machado J.A., Sabatier, J.: Fractional Derivatives and Their Application. Nonlinear Dynamics, vol. 38. Springer, Berlin (2004)
[2] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[3] Caffarelli, L.; Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171, 1903-1930 (2010) · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[4] Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Berlin: Springer, Berlin · Zbl 0917.73004 · doi:10.1007/978-3-7091-2664-6
[5] Díaz, R.; Pariguan, E., On hypergeometric functions and Pochhammer \(k\)-symbol, Divulgaciones Matemáticas, 15, 2, 179-192 (2007) · Zbl 1163.33300
[6] Dorrego, G., An alternative definition for the \(k\)-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9, 10, 481-491 (2015)
[7] Dorrego, G.; Cerutti, R., The \(k\)-fractional Hilfer derivative, Int. J. Math. Anal., 7, 11, 450-543 (2013) · Zbl 1283.26005
[8] Ezati, R.; Nyamoradi, N., Existence of solutions to a Kirchhoff \(\psi \)-Hilfer fractional \(p\)-Laplacian equations, Math. Methods Appl. Sci., 44, 17, 12909-12920 (2021) · Zbl 1491.34012 · doi:10.1002/mma.7593
[9] Furati, K.; Kassim, M.; Tatar, N., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64, 6, 1616-1626 (2012) · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[10] Gaul, L.; Klein, P.; Kempfle, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88 (1991) · doi:10.1016/0888-3270(91)90016-X
[11] Hardy, G., Notes on some points in the integral calculus, Messenger Math., 57, 12-16 (1928) · JFM 53.0217.02
[12] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[13] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[14] Kucche, K.; Mali, A., On the nonlinear \((k,\psi )\)-Hilfer fractional differential equations, Chaos Solitons Fractals, 152, 111335 (2021) · Zbl 1510.34015 · doi:10.1016/j.chaos.2021.111335
[15] Lim, S., Fractional derivative quantum fields at positive temperature, Phys. A Stat. Mech. Appl., 363, 269-281 (2006) · doi:10.1016/j.physa.2005.08.005
[16] Magin, R., Fractional Calculus in Bioengineering (2006), Redding: Begell House Publisher, Redding
[17] Metzler, F.; Schick, W.; Kilan, H.; Nonnenmacher, T., Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys., 103, 7180-7186 (1995) · doi:10.1063/1.470346
[18] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[19] Miller, M.; Ross, B., An introduction to the fractional integrals and derivatives-theory and application (1993), New York: Wiley, New York · Zbl 0789.26002
[20] Mubeen, S.; Habibullah, G., \(k\)-fractional integrals and application, Int. J. Contemp. Math. Sci., 7, 2, 89-94 (2012) · Zbl 1248.33005
[21] Podlubny, I., Fractional Differential Equations (1999), New York: Academic, New York · Zbl 0924.34008
[22] Riewe, F., Mechanics with fractional derivatives, Phys. Rev. E, 55, 3582-3592 (1997) · doi:10.1103/PhysRevE.55.3581
[23] Romerao, L.; Luque, L.; Dorrego, G.; Cerutti, R., On the \(k\)-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci., 8, 1, 41-51 (2013) · Zbl 1285.26009 · doi:10.12988/ijcms.2013.13004
[24] Schechter, M., New linking theorems, Rend. Sem. Mat. Univ. Padova, 99, 255-269 (1998) · Zbl 0907.35053
[25] Sugumarana, H.; Rabha, W.; Kanagarajan, K., On \(\psi \)-Hilfer fractional differential equation with complex order, Univers. J. Math. Appl., 1, 1, 33-38 (2018) · doi:10.32323/ujma.393130
[26] Torres, C., Existence of solutions for fractional Hamiltonian systems, Electron. J. Differ. Equ., 2013, 259, 1-12 (2013) · Zbl 1295.34012
[27] Torres Ledesma, C., Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 27, 314-327 (2015) · Zbl 1457.34015 · doi:10.1016/j.cnsns.2015.02.019
[28] Torres Ledesma, C.; Montalvo Bonilla, MC, Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem, Adv. Oper. Theory, 6, 65 (2021) · Zbl 1490.26006 · doi:10.1007/s43036-021-00159-w
[29] Vanterler da, J.; Sousa, C.; Capelas de Oliveira, E., On the \(\psi \)-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015 · doi:10.1016/j.cnsns.2018.01.005
[30] Vanterler da, J.; Sousa, C.; Zuo, J.; O’Regan, D., The Nehari manifold for a \(\psi \)-Hilfer fractional \(p\)-Laplacian, Appl. Anal. (2021) · Zbl 1507.35331 · doi:10.1080/00036811.2021.1880569
[31] Vanterler da, J.; Sousa, C., Nehari manifold and bifurcation for a \(\psi \)-Hilfer fractional \(p\)-Laplacian, Math. Methods Appl. Sci. (2021) · Zbl 1475.35401 · doi:10.1002/mma.7296
[32] Vanterler da, J., Sousa, C., Aurora P., Capelas de Oliveira, E.: Existence and regularity of weak solutions for \(\psi \)-Hilfer fractional boundary value problem. Mediterr. J. Math. (2020). https://hal.archives-ouvertes.fr/hal-02562931(Accept)
[33] Vanterler da, J. Sousa, C., O’Regan, D., Capelas de Oliveira, E.: On attractivity for \(\psi \)-Hilfer fractional differential equations systems. https://vixra.org/abs/2004.0325
[34] da Vanterler, J.; Sousa, C.; Tavares, L.; Torres-Ledesma, C., A variational approach for a problem involving a \(\psi \)-Hilfer fractional operator, J. Appl. Anal. Comput., 11, 3, 1610-1630 (2021) · Zbl 07905191
[35] Vazquez, J., Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser., 7, 857-885 (2014) · Zbl 1290.26010
[36] Zhou, Y., Basic theory of fractional differential equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.