×

An adaptive moment inversion algorithm for the quadrature methods of moments in particle transport modelling. (English) Zbl 1514.65117

The authors propose a modified version of the adaptive moment inversion algorithm for the solution of the moment advection equations in particle transport modelling. The key challenge of the quadrature method of moments is the calculation of weights and abscissas reconstruction of the number density function (NDF). Here, the authors suggest a new criterion for switching between quadrature approximations with different number of nodes that guarantees that particle velocities are bounded by physically meaningful limits. The efficiency of the new criterion is illustrated for a one-dimensional problem.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
76T15 Dusty-gas two-phase flows
76M28 Particle methods and lattice-gas methods
82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q20 Boltzmann equations

Software:

CHyQMOM
Full Text: DOI

References:

[1] C. Chalons, R. O. Fox, and M. Massot, ‘‘A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework,’’ in Proceedings of the Summer Program (Center for Turbulence Res., Stanford Univ., 2010), pp. 347-358.
[2] Chalons, C.; Kah, D.; Massot, M., Beyond pressureless gas dynamics: Quadrature-based velocity moment models, Commun. Math. Sci., 10, 1241-1272 (2012) · Zbl 1282.76160 · doi:10.4310/CMS.2012.v10.n4.a11
[3] Chalons, C.; Fox, R. O.; Laurent, F.; Massot, M.; Vie, A., Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow, Multiscale Model. Simul., 10, 1553-1583 (2017) · Zbl 1386.76171 · doi:10.1137/16M109209X
[4] Crowe, C. T., Review-numerical models for dilute gas-particle flows, ASME J. Fluids Eng., 104, 297-303 (1982) · doi:10.1115/1.3241835
[5] de Chaisemartin, S.; Freret, L.; Kah, D.; Laurent, F.; Fox, R. O.; Reveillon, J.; Massot, M., Eulerian models for turbulent spray combustion with polydispersity and droplet crossing, C. R. Mec., 337, 438-448 (2009) · Zbl 1432.76134 · doi:10.1016/j.crme.2009.06.016
[6] O. Desjardins, R. O. Fox, and P. Villedieu, ‘‘A quadrature-based moment method for dilute fluid-particle flows,’’ J. Comput. Phys. 227), 6313-6350 (2008). · Zbl 1388.76247
[7] Dunn, D. M.; Squires, K. D., Modeling dilute gas-solid flows using a polykinetic moment method approach, ASME J. Fluids Eng., 138, 041303 (2015) · doi:10.1115/1.4031687
[8] Emre, O.; Kah, D.; Jay, S.; Tran, Q.-H.; Velghe, A.; de Chaisemartin, S.; Fox, R. O.; Laurent, F.; Massot, M., Eulerian moment methods for automotive sprays, Atomiz. Sprays, 25, 189-254 (2015) · doi:10.1615/AtomizSpr.2015011204
[9] Fox, R. O., A quadrature- based third-order moment method for dilute gas-particle flows, J. Comput. Phys., 227, 6313-6350 (2008) · Zbl 1388.76247 · doi:10.1016/j.jcp.2008.03.014
[10] Fox, R. O.; Laurent, F.; Massot, M., Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multifluid method, J. Comput. Phys., 227, 3058-3088 (2008) · Zbl 1329.76257 · doi:10.1016/j.jcp.2007.10.028
[11] Fox, R. O., Large-eddy simulation tools for multiphase flows, Ann. Rev. Fluid Mech., 44, 47-76 (2012) · Zbl 1356.76123 · doi:10.1146/annurev-fluid-120710-101118
[12] Fox, R. O.; Laurent, F.; Vie, A., Conditional hyperbolic quadrature method of moments for kinetic equations, J. Comput. Phys., 365, 269-293 (2018) · Zbl 1395.82232 · doi:10.1016/j.jcp.2018.03.025
[13] Gordon, R. G., Error bounds in equilibrium statistical mechanics, J. Math. Phys., 9, 655-663 (1968) · Zbl 0182.30002 · doi:10.1063/1.1664624
[14] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge: Cambridge Univ. Press, Cambridge · doi:10.1017/CBO9781139016599
[15] McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 27, 255-265 (1997) · doi:10.1080/02786829708965471
[16] Meneguz, E.; Reeks, M. W., Statistical properties of particle segregation in homogeneous isotropic turbulence, J. Fluid Mech., 686, 338-351 (2011) · Zbl 1241.76297 · doi:10.1017/jfm.2011.333
[17] Vikas, V.; Wang, Z. J.; Passalacqua, A.; Fox, R. O., Realizable high-order finite-volume schemes for quadrature-based moment methods, J. Comput. Phys., 230, 5328-5352 (2011) · Zbl 1419.76465 · doi:10.1016/j.jcp.2011.03.038
[18] Wheeler, J. C., Modified moments and gaussian quadratures, Rocky Mountain J. Math., 4, 287-296 (1974) · Zbl 0309.65009 · doi:10.1216/RMJ-1974-4-2-287
[19] Williams, F. A., Spray combustion and atomization, Phys. Fluids, 1, 541-545 (1965) · Zbl 0086.41102 · doi:10.1063/1.1724379
[20] Wright, D. L.; McGraw, R.; Rosner, D. E., Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations, J. Colloid Interface Sci., 236, 242-251 (2001) · doi:10.1006/jcis.2000.7409
[21] Yuan, C.; Fox, R. O., Conditional quadrature method of moments for kinetic equations, J. Comput. Phys., 230, 8216-8246 (2011) · Zbl 1231.82007 · doi:10.1016/j.jcp.2011.07.020
[22] Yoon, C.; McGraw, R., Representation of generally mixed multivariate aerosols by the quadrature method of moments: I. Statistical foundation, J. Aerosol Sci., 35, 561-576 (2004) · doi:10.1016/j.jaerosci.2003.11.003
[23] Yoon, C.; McGraw, R., Representation of generally mixed multivariate aerosols by the quadrature method of moments: II. Aerosol dynamics, J. Aerosol Sci., 35, 577-598 (2004) · doi:10.1016/j.jaerosci.2003.11.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.