×

Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces. (English) Zbl 1514.42026

The authors consider the generalized fractional maximal operator \[ M_{\rho}f(x)=\sup_{r>0}\rho(x, r)|B(x, r)|^{-1}\int_{B(x, r)}|f(y)|\,dy, \] where a positive function \(\rho(x, r)\), \(x\in\mathbb R^N\), \(r>0\), is continuous in the variable \(r\) for each \(x\), and there exists a constant \(C_1\ge 1\) such that \(\rho(x, t_1)\le C_1\rho(x, t_2)\) for all \(x\) whenever \(0<t_1<t_2<\infty\); the open ball \(B(x, r)\) is centered at \(x\) with radius \(r\). Functions \(\rho_1(x. r)=r^{\alpha(x)}\), \(\rho_2(x. r)=(\log(e+1/r))^{-\beta(x)}\) are typical examples of \(\rho(x, r)\). The boundedness of \(M_{\rho}\) on Musielak-Orlicz-Morrey spaces is proved. The Sobolev and Trudinger type inequalities for non-doubling Musielak-Orlicz-Morrey spaces are obtained.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Almeida, A.; Hasanov, J.; Samko, S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15, 195-208 (2008) · Zbl 1263.42002 · doi:10.1515/GMJ.2008.195
[2] Capone, C.; Cruz-Uribe, D.; Fiorenza, A., The fractional maximal operator and fractional integrals on variable \(L^p\) spaces, Rev. Mat. Iberoamericana, 23, 3, 743-770 (2007) · Zbl 1213.42063 · doi:10.4171/RMI/511
[3] Cruz-Uribe, D.; Fiorenza, A., Variable lebesgue spaces. foundations and harmonic analysis. applied and numerical harmonic analysis (2013), Heidelberg: Birkhauser/Springer, Heidelberg · Zbl 1268.46002
[4] Deringoz, F.; Guliyev, VS; Nakai, E.; Sawano, Y.; Shi, M., Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind, Positivity, 23, 727-757 (2019) · Zbl 1440.42076 · doi:10.1007/s11117-018-0635-9
[5] Diening, L., Harjulehto, P., Hästö, P., R \(\stackrel{\circ }{\text{u}}\) žička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg (2011) · Zbl 1222.46002
[6] Harjulehto, P.; Hästö, P., Orlicz spaces and generalized orlicz spaces. Lecture notes in mathematics (2019), Cham: Springer, Cham · Zbl 1436.46002 · doi:10.1007/978-3-030-15100-3
[7] Maeda, F-Y; Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137, 76-96 (2013) · Zbl 1267.46045 · doi:10.1016/j.bulsci.2012.03.008
[8] Maeda, F-Y; Mizuta, Y.; Ohno, T.; Shimomura, T., Sobolev’s inequality for double phase functionals with variable exponents, Forum Math., 31, 2, 517-527 (2019) · Zbl 1423.46049 · doi:10.1515/forum-2018-0077
[9] Maeda, F-Y; Ohno, T.; Shimomura, T., Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces, Tohoku Math. J., 69, 4, 483-495 (2017) · Zbl 1387.42017 · doi:10.2748/tmj/1512183626
[10] Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of fractional maximal operators for double phase functionals with variable exponents, J. Math. Anal. Appl., 501, 124360 (2021) · Zbl 1478.46028 · doi:10.1016/j.jmaa.2020.124360
[11] Musielak, J., Orlicz spaces and modular spaces. Lecture Notes in Math. (1983), Berlin: Springer-Verlag, Berlin · Zbl 0557.46020 · doi:10.1007/BFb0072210
[12] Sawano, Y.; Sugano, S.; Tanaka, H., Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc., 363, 12, 6481-6503 (2011) · Zbl 1229.42024 · doi:10.1090/S0002-9947-2011-05294-3
[13] Shi, M.; Arai, R.; Nakai, E., Commutators of integral operators with functions in Campanato spaces on Orlicz-Morrey spaces, Banach J. Math. Anal., 15, 22 (2021) · Zbl 1455.42021 · doi:10.1007/s43037-020-00094-7
[14] Stein, EM, Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton Univ. Press, Princeton · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.