×

Sobolev’s inequality for double phase functionals with variable exponents. (English) Zbl 1423.46049

Summary: Our aim in this paper is to establish generalizations of Sobolev’s inequality for double phase functionals \(\Phi(x,t)=t^{p(x)}+a(x)t^{q(x)}\), where \(p(\cdot)\) and \(q(\,\cdot\,)\) satisfy log-Hölder conditions and \(a(\,\cdot\,)\) is nonnegative, bounded and Hölder continuous of order \(\theta\in (0,1]\).

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.; Adams, D. R.; Hedberg, L. I., Function Spaces and Potential Theory (1996) · Zbl 0834.46021
[2] Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal. 275 (2018), no. 9, 2538-2571.; Ahmida, Y.; Chlebicka, I.; Gwiazda, P.; Youssfi, A., Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275, 9, 2538-2571 (2018) · Zbl 1405.42042
[3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208.; Almeida, A.; Hasanov, J.; Samko, S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15, 195-208 (2008) · Zbl 1263.42002
[4] P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J. 27 (2016), 347-379.; Baroni, P.; Colombo, M.; Mingione, G., Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27, 347-379 (2016) · Zbl 1335.49057
[5] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62.; Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57, 2 (2018) · Zbl 1394.49034
[6] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable \(L^p\) spaces, Rev. Mat. Iberoam. 23 (2007), no. 3, 743-770.; Capone, C.; Cruz-Uribe, D.; Fiorenza, A., The fractional maximal operator and fractional integrals on variable \(L^p\) spaces, Rev. Mat. Iberoam., 23, 3, 743-770 (2007) · Zbl 1213.42063
[7] M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219-273.; Colombo, M.; Mingione, G., Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 219-273 (2015) · Zbl 1325.49042
[8] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443-496.; Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 443-496 (2015) · Zbl 1322.49065
[9] L. Diening, Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\,\cdot\,)}\) and \(W^{k,p(\,\cdot\,)}\), Math. Nachr. 263 (2004), no. 1, 31-43.; Diening, L., Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\,\cdot\,)}\) and \(W^{k,p(\,\cdot\,)}\), Math. Nachr., 263, 1, 31-43 (2004) · Zbl 1065.46024
[10] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr. 279 (2006), no. 13-14, 1463-1473.; Futamura, T.; Mizuta, Y.; Shimomura, T., Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr., 279, 13-14, 1463-1473 (2006) · Zbl 1109.31004
[11] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391-417.; Futamura, T.; Mizuta, Y.; Shimomura, T., Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl., 366, 391-417 (2010) · Zbl 1193.46016
[12] F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with nonstandard growth conditions, J. Differential Equations 254 (2013), 1280-1305.; Giannetti, F.; Passarelli di Napoli, A., Regularity results for a new class of functionals with nonstandard growth conditions, J. Differential Equations, 254, 1280-1305 (2013) · Zbl 1255.49064
[13] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci. 170 (2010), no. 4, 423-443.; Guliyev, V. S.; Hasanov, J.; Samko, S., Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci., 170, 4, 423-443 (2010) · Zbl 1307.46018
[14] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285-304.; Guliyev, V. S.; Hasanov, J.; Samko, S., Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107, 285-304 (2010) · Zbl 1213.42077
[15] P. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038-4048; Corrigendum to “The maximal operator on generalized Orlicz spaces”, J. Funct. Anal. 271 (2016), no. 1, 240-243.; Hästö, P., The maximal operator on generalized Orlicz spaces, J. Funct. Anal., 269, 12, 4038-4048 (2015) · Zbl 1338.47032
[16] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), 76-96.; Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137, 76-96 (2013) · Zbl 1267.46045
[17] F.-Y. Maeda, T. Ohno and T. Shimomura, Boundedness of maximal operator on Musielak-Orlicz-Morrey spaces, Tohoku Math. J. 69 (2017), 483-495.; Maeda, F.-Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operator on Musielak-Orlicz-Morrey spaces, Tohoku Math. J., 69, 483-495 (2017) · Zbl 1387.42017
[18] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56 (2011), no. 7-9, 671-695.; Mizuta, Y.; Nakai, E.; Ohno, T.; Shimomura, T., Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ., 56, 7-9, 671-695 (2011) · Zbl 1228.31004
[19] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\,\cdot\,)}(\log L)^{q(\,\cdot\,)}\), J. Math. Anal. Appl. 345 (2008), 70-85.; Mizuta, Y.; Ohno, T.; Shimomura, T., Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\,\cdot\,)}(\log L)^{q(\,\cdot\,)}\), J. Math. Anal. Appl., 345, 70-85 (2008) · Zbl 1153.31002
[20] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.; Mizuta, Y.; Shimomura, T., Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan, 60, 583-602 (2008) · Zbl 1161.46305
[21] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.; Musielak, J., Orlicz Spaces and Modular Spaces (1983) · Zbl 0557.46020
[22] J. Ok, Gradient estimates for elliptic equations with \(L^{p(\,\cdot\,)}\log L\) growth, Calc. Var. Partial Differential Equations 55 (2016), no. 2, Paper No. 26.; Ok, J., Gradient estimates for elliptic equations with \(L^{p(\,\cdot\,)}\log L\) growth, Calc. Var. Partial Differential Equations, 55, 2 (2016) · Zbl 1342.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.