×

An approximate solution for stochastic Burgers’ equation driven by white noise. (English) Zbl 1513.65011

Summary: This paper proposes an approximate solution based on two-dimensional shifted Legendre polynomials, together with its operational matrices of integration and stochastic integration for solving stochastic Burgers’ equations with a space-uniform white noise and with variable coefficients. The aforementioned operational matrices transform the problem under consideration into a system of algebraic equations. The error analysis in the \(L^2\) norm for the proposed method is discussed in detail. The transformation is done by taking into account the initial and boundary conditions. Hence, the proposed method is very simple for solving such problems. Numerical examples discussed confirm the efficiency and accuracy of the proposed method. A simulation study was carried out. An algorithm was developed and implemented on Maple software.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H40 White noise theory
35Q53 KdV equations (Korteweg-de Vries equations)
35R60 PDEs with randomness, stochastic partial differential equations

Software:

Maple
Full Text: DOI

References:

[1] Alabert A, Gyongy I (2006) On numerical approximation of stochastic Burgers’ equation. In: From stochastic calculus to mathematical finance, 1-15 · Zbl 1116.60027
[2] Appley, JA; Devin, S.; Reynolda, DW, Almost sure convergence of solutions of linear stochastic Volterra equations to non equilibrium limits, J Integral Equ Appl, 19, 405-437 (2007) · Zbl 1154.45012 · doi:10.1216/jiea/1192628616
[3] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J Numer Anal, 45, 3, 1005-1034 (2007) · Zbl 1151.65008 · doi:10.1137/050645142
[4] Berger MA, Mizel VJ (1980) Volterra equations with Ito integrals I. J Integral Equ: 2187-245. https://www.jstor.org/stable/26164035 · Zbl 0442.60064
[5] Bertini, L.; Giacomin, G., Stochastic Burgers and KPZ equations from particle systems, Commun Math Phys, 183, 3, 571-607 (1997) · Zbl 0874.60059 · doi:10.1007/s002200050044
[6] Bertini, L.; Cancrini, N.; Jona-Lasinio, G., The stochastic Burgers equation, Commun Math Phys, 165, 2, 211-232 (1994) · Zbl 0807.60062 · doi:10.1007/BF02099769
[7] Blomker, D.; Jentzen, A., Galerkin approximations for the stochastic Burgers equation, SIAM J Numer Anal, 51, 1, 694-715 (2013) · Zbl 1267.60071 · doi:10.1137/110845756
[8] Burgers, JM, A mathematical model illustrating the theory of turbulence, Adv Appl Mech, 1, 171-199 (1948) · doi:10.1016/S0065-2156(08)70100-5
[9] Catuogno, P.; Olivera, C., Strong solution of the stochastic Burgers equation, Appl Anal, 93, 3, 646-652 (2014) · Zbl 1301.60070 · doi:10.1080/00036811.2013.797074
[10] Da Prato, G.; Debussche, A.; Temam, R., Stochastic Burgers’ equation, Nonlinear Differ Equ Appl NoDEA, 1, 4, 389-402 (1994) · Zbl 0824.35112 · doi:10.1007/BF01194987
[11] Doha, EH, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J Phys A Math Gen, 37, 3, 657 (2004) · Zbl 1055.33007 · doi:10.1088/0305-4470/37/3/010
[12] Düben, P.; Homeier, D.; Jansen, K.; Mesterházy, D.; Münster, G.; Urbach, C., Monte Carlo simulations of the randomly forced Burgers equation, EPL (Europhys Lett), 84, 4, 40002 (2008) · doi:10.1209/0295-5075/84/40002
[13] Eule, S.; Friedrich, R., A note on the forced Burgers equation, Phys Lett A, 351, 4-5, 238-241 (2006) · Zbl 1234.35194 · doi:10.1016/j.physleta.2005.11.019
[14] Flores, S.; Hight, E.; Olivares-Vargas, E.; Oraby, T.; Palacio, J.; Suazo, E.; Yoon, J., Exact and numerical solution of stochastic Burgers’ equations with variable coefficients, Disc Contin Dyn Syst, 13, 10, 2735 (2020) · Zbl 1460.60064
[15] Gyöngy, I.; Nualart, D., On the stochastic Burgers’ equation in the real line, Ann Prob, 27, 2, 782-802 (1999) · Zbl 0939.60058 · doi:10.1214/aop/1022677386
[16] Hairer, M.; Voss, J., Approximations to the stochastic Burgers equation, J Nonlinear Sci, 21, 6, 897-920 (2011) · Zbl 1273.60004 · doi:10.1007/s00332-011-9104-3
[17] Holden, H.; Lindstrom, T.; Oksendal, B.; Uboe, J.; Zhang, TS, The Burgers equation with a noisy force and the stochastic heat equation, Commun Part Differ Equ, 19, 1-2, 119-141 (1994) · Zbl 0804.35158 · doi:10.1080/03605309408821011
[18] Jentzen, A.; Kloeden, P., Taylor expansions of solutions of stochastic partial differential equations with additive noise, Ann Prob, 38, 2, 532-569 (2010) · Zbl 1220.35202 · doi:10.1214/09-AOP500
[19] Khodabin, M.; Maleknejad, K.; Rostami, M.; Nouri, M., Numerical solution of stochastic differential equations by second order Runge-Kutta methods, Math Comput Model, 53, 9-10, 1910-1920 (2011) · Zbl 1219.65009 · doi:10.1016/j.mcm.2011.01.018
[20] Khodabin, M.; Maleknejad, K.; Rostami, M.; Nouri, M., Interpolation solution in generalized stochastic exponential population growth model, Appl Math Model, 36, 3, 1023-1033 (2012) · Zbl 1243.60056 · doi:10.1016/j.apm.2011.07.061
[21] Klebaner, F., Introduction to stochastic calculus with applications (2005), London: Imperial College Press, London · Zbl 1077.60001 · doi:10.1142/p386
[22] Levin, JJ; Nohel, JA, On a system of integro differential equations occurring in reactor dynamics, J Math Mech, 9, 3, 347-368 (1960) · Zbl 0094.08503
[23] Luke, Y., The special functions and their Approximations (1969), New York: Academic press, New York · Zbl 0193.01701
[24] Mao, X., Stochastic differential equations and applications (2007), Chichester: Horwood Publishing, Chichester · Zbl 1138.60005
[25] Mirzaee, F.; Samadyar, N., Application of operational matrices for solving system of linear Stratonovich Volterra integral equation, J Comput Appl Math, 320, 164-175 (2017) · Zbl 1372.65019 · doi:10.1016/j.cam.2017.02.007
[26] Nobile, F.; Tempone, R.; Webster, CG, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J Numer Anal, 46, 5, 2309-2345 (2008) · Zbl 1176.65137 · doi:10.1137/060663660
[27] Oksendal, B., Stochastic differential equations, an introduction with applications (1998), New York: Springer, New York · Zbl 0897.60056
[28] Pardoux E, Protter P (1990) Stochastic Volterra equations with anticipating coefficients. Ann Probab 18: 1635-1655. https://www.jstor.org/stable/2244340 · Zbl 0717.60073
[29] Platen E, Bruti-Liberati N (2010) Numerical solution of stochastic differential equations with jumps in finance (Vol. 64), Springer Science & Business Media · Zbl 1225.60004
[30] Shiota, Y., A linear stochastic integral equation containing the extended Ito integral, Math Rep, 9, 43-65 (1986) · Zbl 0615.60057 · doi:10.1007/BF01193054
[31] Truman, A.; Zhao, HZ, On stochastic diffusion equations and stochastic Burgers’ equations, J Math Phys, 37, 1, 283-307 (1996) · Zbl 0866.35149 · doi:10.1063/1.531391
[32] Weinan E (2000) Stochastic hydrodynamics. In: Talks given at the meeting Developments in Mathematics, Harvard University (Dec 2000): 66
[33] Zhang, X., Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J Funct Anal, 258, 4, 1361-1425 (2010) · Zbl 1189.60124 · doi:10.1016/j.jfa.2009.11.006
[34] Zhu, L.; Fan, Q., Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun Nonlinear Sci Numer Simul, 17, 6, 2333-2341 (2012) · Zbl 1335.45002 · doi:10.1016/j.cnsns.2011.10.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.