×

On stochastic diffusion equations and stochastic Burgers’ equations. (English) Zbl 0866.35149

The authors construct a strong solution for the stochastic Hamilton-Jacobi equation by using classical mechanics before the caustics. The authors thereby obtain the viscosity solution for a certain class of inviscid stochastic Burgers equations. This viscosity solution is not continuous beyond the caustics of the corresponding Hamilton-Jacobi equation. The Hopf-Cole transformation is used to identify the stochastic heat equation and the viscous stochastic Burgers’ equation. The exact solution for the above two equations is given in terms of the stochastic Hamilton-Jacobi function under a no-caustic condition. The authors construct the heat kernel for harmonic oscillator potentials in hyperbolic space and for harmonic oscillator potentials in Euclidean spaces thereby obtaining the stochastic Mehler formula.
In this paper, the authors restrict the Stratonovich white noise term to be white noise in time. The authors are currently investigating whether our treatment can be generalized to include white noise in space and the (much more difficult) white noise in space-time.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
35C05 Solutions to PDEs in closed form
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] DOI: 10.1063/1.523240 · Zbl 0366.35042 · doi:10.1063/1.523240
[2] DOI: 10.1063/1.524784 · Zbl 0485.70024 · doi:10.1063/1.524784
[3] DOI: 10.1002/cpa.3160200404 · doi:10.1002/cpa.3160200404
[4] DOI: 10.1098/rspa.1994.0119 · Zbl 0812.35123 · doi:10.1098/rspa.1994.0119
[5] DOI: 10.1103/PhysRevLett.56.889 · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[6] DOI: 10.1016/0022-0396(88)90029-0 · Zbl 0651.60067 · doi:10.1016/0022-0396(88)90029-0
[7] DOI: 10.1080/17442509208833772 · Zbl 0756.60072 · doi:10.1080/17442509208833772
[8] Burgers J. M., Proc. Acad. Sci. Amsterdam 43 pp 2– (1940)
[9] DOI: 10.1016/S0065-2156(08)70100-5 · doi:10.1016/S0065-2156(08)70100-5
[10] DOI: 10.1002/cpa.3160030302 · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[11] DOI: 10.1007/BF02099769 · Zbl 0807.60062 · doi:10.1007/BF02099769
[12] DOI: 10.1007/BF02180136 · Zbl 1080.60508 · doi:10.1007/BF02180136
[13] DOI: 10.1007/BF01268990 · Zbl 0810.60058 · doi:10.1007/BF01268990
[14] DOI: 10.1080/03605309408821011 · Zbl 0804.35158 · doi:10.1080/03605309408821011
[15] DOI: 10.1103/PhysRevE.49.R2525 · doi:10.1103/PhysRevE.49.R2525
[16] DOI: 10.1063/1.525264 · Zbl 0496.60067 · doi:10.1063/1.525264
[17] DOI: 10.1016/0022-0396(69)90091-6 · Zbl 0172.13901 · doi:10.1016/0022-0396(69)90091-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.