×

Some applications of the dual spaces of Hardy-amalgam spaces. (English) Zbl 1513.42029

The spaces \(\mathcal{H}^{(q,p)}\) were introduced by the authors in [J. Math. Anal. Appl. 455, No. 2, 1899–1936 (2017; Zbl 1371.42024)] as analogues of the real Hardy spaces \(H^p\), replacing the condition that the maximal function \(\mathcal{M}_\varphi(f)=\sup_{t>0}\vert f\ast\varphi_t\vert \) (for suitable smooth \(\varphi\) supported in the unit ball of \(\mathbb{R}^d\)) with the condition that the same maximal function lies in the amalgam space \((L^q,\ell^p)\) with \(\Vert f\Vert_{q,p}=\Vert \{\Vert f\chi_{Q_k}\Vert_q\}\Vert_{\ell^p}\) where \(Q_k=k+[0,1)^d\). Corresponding local Hardy-type spaces are defined in terms of \(\mathcal{M}_\varphi(f)=\sup_{0<t<1}\vert f\ast\varphi_t\vert \).
This work addresses two questions. The first is whether the inclusions of \(\mathcal{H}^{(1,p)}\) in \((L^1,\ell^p)\) and of \(\mathcal{H}^{(q,p)}\) in \(\mathcal{H}^{(q,p)}_{\text{ loc}}\) (\(0<q\leq \min\{p,1\}\), \(p<\infty\)) are strict. The second is whether certain known bounds on Calderón-Zygmund operators on Hardy spaces and their duals extend to the amalgam setting. Duals of the spaces \(\mathcal{H}^{(q,p)}\) were identified by the authors in [Acta Math. Sin., Engl. Ser. 38, No. 3, 519–546 (2022; Zbl 1491.42032)]. Up to isomorphism they are Campanato-type spaces \(\mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}\) (\(r^\prime=r/(r-1)\), \(\delta\geq \lfloor d(1/q-1)\rfloor\)) with \(\phi_1: \, {\text {cubes}}\to (0,\infty)\) defined by \(\phi_1(Q)=\frac{\Vert \chi_Q\Vert_{q,p}}{\vert Q\vert}\). The infimum of constants \(C\) such that \[\sum_{j\in\mathbb{Z}} 2^j O(g,\Omega^j,r)\leq C\Vert \sum_{j\in\mathbb{Z}} 2^{j\eta}\chi_{\Omega^j}\Vert_{\frac{q}{\eta},\frac{p}{\eta}}^{\frac{1}{\eta}}\] defines a norm on \(\mathcal{L}^{(q,p,\eta)}_{r',\phi_1,\delta}\) where \(\{\Omega^j\}\) ranges over families of open sets such that \(\Vert \sum_{j\in\mathbb{Z}}2^{j\eta}\chi_{\Omega_j}\Vert_{\frac{q}{\eta},\frac{p}{\eta}}<\infty\), and \[O(g,\Omega^j,r)=\sup\sum_{n\geq 0}\vert Q^n\vert ^{1/r'}\Vert (g-P^\delta_{\tilde{Q}^n}(g))\chi_{\tilde{Q}^n}\Vert_r \] with \(P^\delta_Q(g)\) the unique polynomial of degree at most \(\delta\) such that \(g-P^\delta_{Q}(g)\) is orthogonal on \(Q\) to all polynomials of degree at most \(\delta\). The supremum is taken over all families of cubes whose unions are contained in \(\Omega\) and such that \(\sum_n \chi_{Q^n}\leq K\) for some constant \(K\) depending only on dimension \(d\). A corresponding description applies to the dual of the local Hardy-type space.
It is demonstrated that the inclusion \(\mathcal{H}^{1,p}\subset (L^1,\ell^p)\) is strict (in the same way that the real Hardy space is strictly contained inside of \(L^1\)). It is also proven that the inclusion \(\mathcal{H}^{q,p}\subset \mathcal{H}^{q,p}_{\text{loc}}\) is strict. These facts are proven, but not stated as theorems.
Let \(X\) stand for the amalgam space \((L^q,\ell^p)\). Define \(\mathcal{L}_{X,r,\delta,\eta}\) in terms of \[ \vert f\Vert_{X,r,\delta,\eta}=\sup\frac{\sum_{j=1}^m \frac{\lambda_i}{\Vert \chi_{B_i}\Vert_X}\Bigl(\frac{1}{\vert B_j\vert }\int_{B_j}\vert f(x)-P_{B_j}^\delta(f)(x)\vert ^r\Bigr)^{1/r} }{\Vert \{\sum_{i=1}^m\frac{\lambda_i}{\Vert \chi_{B_i}\Vert_X^\eta}\chi_{B_i}\}^{1/\eta}\Vert_X}\] where the supremum is taken over all finite collections of balls \(\{B_j\}\) and \(\{\lambda_j\}\subset [0,R)\) for some \(R>0\).
It is shown that \(\mathcal{L}_{X,r,\delta,\eta}\) is continuously embedded in \(\mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}\). It is also stated as unknown whether a reverse inclusion of \(\mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}\) inside \(\mathcal{L}_{X,r,\delta,\eta}\) holds. Boundedness properties of certain Calderón-Zygmund operators are also proven (Theorems 4.4 and 4.7). Let \(1<p<\infty\), \(1\leq r<p^\prime\), \(0<\eta<1\) (allowing \(\eta=1\) if \(r=1\)) and let \(K\) be a tempered distribution such that \(\vert \widehat{K}\vert \leq A\) and \(\vert \partial^\beta K(x)\vert \leq \frac{B}{\vert x\vert ^{d+\beta}}\) for all multi-indices \(\vert \beta\vert \leq \delta\). It is proven that \(T(f)=K\ast f\) (\(f\in\mathcal{S}\)) is extendable to \((L^\infty,\ell^{p^\prime})\) and that there is a \(C>0\) such that for all \(f\in (L^\infty,\ell^{p^\prime})\), \[\Vert T(f)\Vert_{\mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}}\leq C\Vert f\Vert_{\infty,p^\prime}\, .\] Supposing further that \(\frac{d}{d+\delta}q\leq 1<p<\infty\), and otherwise \(p\), \(r\), \(\eta\), \(q\) are as above, one further has for all \(f\in \mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}\) that \[\Vert T(f)\Vert_{\mathcal{L}^{(q,p,\eta)}_{r^\prime,\phi_1,\delta}}\leq C\Vert f\Vert_{\mathcal{L}^{(q,p,\eta)}_{r',\phi_1,\delta}}\, .\]

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B30 \(H^p\)-spaces
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42A85 Convolution, factorization for one variable harmonic analysis

References:

[1] Z. V. de P. Ablé and J. Feuto, Atomic decomposition of Hardy-amalgam spaces, J. Math. Anal. Appl., 455 (2017), 1899-1936 · Zbl 1371.42024
[2] Z. V. de P. Ablé and J. Feuto, Duals of Hardy-amalgam spaces and norm inequalities, Anal. Math., 45 (2019), 647-686 · Zbl 1449.42038
[3] Z. V. de P. Ablé and J. Feuto, Duals of Hardy-amalgam spaces \(\cal H\it_{\rm loc\it }^{(q,p)}\) and pseudo-differential operators, Int. J. Math. Anal. (Ruse), 15 (2021), 331-379
[4] Z. V. de P. Ablé and J. Feuto, New characterizations of the dual spaces of Hardy-amalgam spaces, Acta Math. Sin. (Engl. Ser.), (2022), doi:10.1007/s10114-022-0572-1 · Zbl 1491.42032
[5] Benedek, A.; Panzone, R., The space \(L^p\), with mixed norm, Duke Math. J., 28, 301-324 (1961) · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9
[6] Bertrandias, JP; Datry, C.; Dupuis, C., Unions et intersections d’espaces \(L^p\) invariantes par translation ou convolution, Ann. Inst. Fourier (Grenoble), 28, 53-84 (1978) · Zbl 0365.46029 · doi:10.5802/aif.689
[7] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), 122 pp · Zbl 1036.42020
[8] Busby, RC; Smith, HA, Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc., 263, 309-341 (1981) · Zbl 0465.43003 · doi:10.1090/S0002-9947-1981-0594411-4
[9] Brezis, H., Functional Analysis (2011), Springer (New York: Sobolev Spaces and Partial Differential Equations, Springer (New York · Zbl 1220.46002
[10] D.-C. Chang, S. Wang, D. Yang and Y. Zhang, Littlewood-Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces, Complex Anal. Oper. Theory, 14 (2020), Paper No. 40, 33 pp · Zbl 1439.42026
[11] Cleanthous, G.; Georgiadis, AG; Nielsen, M., Anisotropic mixed-norm Hardy spaces, J. Geom. Anal., 27, 2758-2787 (2017) · Zbl 1388.42060 · doi:10.1007/s12220-017-9781-8
[12] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, American Mathematical Society (Providence, RI, 2001) · Zbl 0969.42001
[13] Fefferman, C.; Stein, EM, Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) · Zbl 0222.26019 · doi:10.2307/2373450
[14] H. G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators, (Budapest, 1980), Coll. Math. Soc. János Bolyai, vol. 35, North-Holland (Amsterdam, 1980), pp. 509-524 · Zbl 0528.43001
[15] Fournier, JJF; Stewart, J., Amalgams of \(L^p\) and \(l^p\), Bull. Amer. Math. Soc., 13, 1-21 (1985) · Zbl 0593.43005 · doi:10.1090/S0273-0979-1985-15350-9
[16] Goldberg, D., A local version of real Hardy spaces, Duke Math. J., 46, 27-42 (1979) · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9
[17] L. Grafakos, Classical Fourier Analysis, 2nd ed., Graduate Texts in Math., 249, Springer (New York, 2009) · Zbl 1158.42001
[18] L. Grafakos, Modern Fourier Analysis, 3rd ed., Graduate Texts in Math., 250, Springer (New York, 2014) · Zbl 1304.42002
[19] Hart, J.; Torres, RH; Wu, X., Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces, Trans. Amer. Math. Soc., 370, 8581-8612 (2018) · Zbl 1409.42009 · doi:10.1090/tran/7312
[20] Holland, F., Harmonic analysis on amalgams of \(L^p\) and \(l^q\), J. London Math. Soc., 2, 295-305 (1975) · Zbl 0314.46029 · doi:10.1112/jlms/s2-10.3.295
[21] Huang, L.; Liu, J.; Yang, D.; Yuan, W., Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, J. Geom. Anal., 29, 1991-2067 (2019) · Zbl 1420.42018 · doi:10.1007/s12220-018-0070-y
[22] Huang, L.; Liu, J.; Yang, D.; Yuan, W., Dual spaces of anisotropic mixed-norm Hardy spaces, Proc. Amer. Math. Soc., 147, 1201-1215 (2019) · Zbl 1412.42060 · doi:10.1090/proc/14348
[23] Huang, L.; Liu, J.; Yang, D.; Yuan, W., Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces, J. Approx. Theory, 258 (2020) · Zbl 1448.42030 · doi:10.1016/j.jat.2020.105459
[24] Huang, L.; Liu, J.; Yang, D.; Yuan, W., Real-variable characterizations of new anisotropic mixed-norm Hardy spaces, Commun. Pure, Appl. Anal., 19, 3033-3082 (2020) · Zbl 1437.42033
[25] Huang, L.; Yang, D., On function spaces with mixed norms - a survey, J. Math. Study, 54, 262-336 (2021) · Zbl 1488.42110 · doi:10.4208/jms.v54n3.21.03
[26] L. Huang, D. Yang and W. Yuan, Anisotropic mixed-norm Campanato-type spaces with applications to duals of anisotropic mixed-norm Hardy spaces, Banach J. Math. Anal., 15 (2021), Paper No. 62, 36 pp · Zbl 1471.42051
[27] Liang, Y.; Sawano, Y.; Ullrich, T.; Yang, D.; Yuan, W., A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces, Dissertationes Math. (Rozprawy Mat.), 489, 1-114 (2013) · Zbl 1283.46027 · doi:10.4064/dm489-0-1
[28] Nakai, E.; Sawano, Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262, 3665-3748 (2012) · Zbl 1244.42012 · doi:10.1016/j.jfa.2012.01.004
[29] Peetre, J., On convolution operators leaving \(L^{p,\lambda }\) spaces invariant, Ann. Math. Pura Appl., 72, 295-304 (1966) · Zbl 0149.09102 · doi:10.1007/BF02414340
[30] W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Appl. Math., McGraw-Hill, Inc. (New York, 1991) · Zbl 0867.46001
[31] Y. Sawano, K.-P. Ho, D. Yang and S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. (Rozprawy Mat.), 525 (2017), 102 pp · Zbl 1392.42021
[32] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of Timothy S. Murphy, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press (Princeton, NJ, 1993) · Zbl 0821.42001
[33] Stewart, J., Fourier transforms of unbounded measures, Canad. J. Math., 31, 1281-1292 (1979) · Zbl 0465.43004 · doi:10.4153/CJM-1979-106-4
[34] Stewart, J.; Watson, S., Which amalgams are convolution algebras?, Proc. Amer. Math. Soc., 93, 621-627 (1985) · Zbl 0579.43004 · doi:10.1090/S0002-9939-1985-0776191-1
[35] F. Wang, D. Yang and S. Yang, Applications of Hardy spaces associated with ball quasi-Banach function spaces, Results Math., 75 (2020), Article 26, 58 pp · Zbl 1431.42040
[36] S. Wang, D. Yang, W. Yuan and Y. Zhang, Weak Hardy-type spaces associated with ball quasi-Banach function spaces. II: Littlewood-Paley characterizations and real interpolation, J. Geom. Anal., 31 (2021), 631-696 · Zbl 1460.42033
[37] Yan, X.; Yang, D.; Yuan, W., Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces, Front. Math. China, 15, 769-806 (2020) · Zbl 1455.42013 · doi:10.1007/s11464-020-0849-6
[38] Yan, X.; Yang, D.; Yuan, W., Intrinsic square function characterizations of several Hardy-type spaces - a survey, Anal. Theory Appl., 37, 426-464 (2021) · Zbl 1499.42105 · doi:10.4208/ata.2021.lu80.09
[39] D. Yang, W. Yuan and Y. Zhang, Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces, J. Funct. Anal., 280 (2021) 108796, 74 pp · Zbl 1457.42036
[40] K. Yosida, Functional Analysis, Classics in Mathematics, Springer-Verlag (Berlin, 1995) · Zbl 0842.92020
[41] Y. Zhang, L. Huang, D. Yang and W. Yuan, New ball Campanato-type function spaces and their applications, J. Geom. Anal., 32 (2022), Paper No. 99, 42 pp · Zbl 1482.42065
[42] Y. Zhang, D. Yang, W. Yuan and S. Wang, Weak Hardy-type spaces associated with ball quasi-Banach function spaces. I: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math., 64 (2021), 2007-2064 · Zbl 1476.42017
[43] Y. Zhang, D. Yang and W. Yuan, Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions, Commun. Contemp. Math., (2021) 2150004, 35 pp · Zbl 1494.42027
[44] Zhang, Y.; Yang, D.; Yuan, W.; Wang, S., Real-variable characterizations of Orlicz-slice Hardy spaces, Anal. Appl. (Singap.), 17, 597-664 (2019) · Zbl 1423.42042 · doi:10.1142/S0219530518500318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.