×

Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions. (English) Zbl 1494.42027

Summary: Recently, both the bilinear decompositions \(h^1(\mathbb{R}^n)\times\mathrm{bmo}(\mathbb{R}^n)\subset L^1(\mathbb{R}^n)+ h_\ast^{\Phi}(\mathbb{R}^n)\) and \(h^1(\mathbb{R}^n)\times\mathrm{bmo}(\mathbb{R}^n)\subset L^1(\mathbb{R}^n)+h^{\log}(\mathbb{R}^n)\) were established. In this paper, the authors prove in some sense that the former is sharp, while the latter is not. To this end, the authors first introduce the local Orlicz-slice Hardy space which contains \(h_\ast^{\Phi}(\mathbb{R}^n)\), a variant of the local Orlicz Hardy space, introduced by A. Bonami and J. Feuto [in: Recent developments in real and harmonic analysis. In honor of Carlos Segovia. Boston, MA: Birkhäuser. 57–71 (2010; Zbl 1202.46032)] as a special case, and obtain its dual space by establishing its characterizations via atoms, finite atoms, and various maximal functions, which are new even for \(h_\ast^{\Phi}(\mathbb{R}^n)\). The relationship \(h_\ast^{\Phi}(\mathbb{R}^n)\subsetneq h^{\log}(\mathbb{R}^n)\) is also clarified.

MSC:

42B30 \(H^p\)-spaces
42B15 Multipliers for harmonic analysis in several variables
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 1202.46032

References:

[1] Auscher, P. and Mourgoglou, M., Representation and uniqueness for boundary value elliptic problems via first order systems, Rev. Mat. Iberoam.35 (2019) 241-315. · Zbl 1421.35090
[2] Auscher, P. and Prisuelos-Arribas, C., Tent space boundedness via extrapolation, Math. Z.286 (2017) 1575-1604. · Zbl 1375.42010
[3] Bonami, A., Cao, J., Ky, L. D., Liu, L., Yang, D. and Yuan, W., Multiplication between Hardy spaces and their dual spaces, J. Math. Pures Appl.131(9) (2019) 130-170. · Zbl 1431.42038
[4] Bonami, A. and Feuto, J., Products of functions in Hardy and Lipschitz or BMO spaces, in Recent Developments in Real and Harmonic Analysis, , (Birkhäuser Boston, Inc., Boston, MA, 2010), pp. 57-71. · Zbl 1202.46032
[5] Bonami, A., Feuto, J. and Grellier, S., Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat.54 (2010) 341-358. · Zbl 1205.42020
[6] Bonami, A., Feuto, J., Grellier, S. and Ky, L. D., Atomic decomposition and weak factorization in generalized Hardy spaces of closed forms, Bull. Sci. Math.141 (2017) 676-702. · Zbl 1386.32008
[7] Bonami, A., Grellier, S. and Ky, L. D., Paraproducts and products of functions in \(\text{BMO}( \mathbb{R}^n)\) and \(H^1( \mathbb{R}^n)\) through wavelets, J. Math. Pures Appl.97(9) (2012) 230-241. · Zbl 1241.47028
[8] Bonami, A. and Ky, L. D., Factorization of some Hardy-type spaces of holomorphic functions, C. R. Math. Acad. Sci. Paris352 (2014) 817-821. · Zbl 1304.30069
[9] Bonami, A., Iwaniec, T., Jones, P. and Zinsmeister, M., On the product of functions in BMO and \(H^1\), Ann. Inst. Fourier (Grenoble)57 (2007) 1405-1439. · Zbl 1132.42010
[10] Bonami, A., Liu, L., Yang, D. and Yuan, W., Pointwise multipliers of Zygmund classes on \(\mathbb{R}^n\), J. Geom. Anal. (2020), https://doi.org/10.1007/s12220-020-00453-8. · Zbl 1471.42025
[11] Bui, H., Weighted Hardy spaces, Math. Nachr.103 (1981) 45-62. · Zbl 0522.46034
[12] Cao, J., Ky, L. D. and Yang, D., Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets, Commun. Contemp. Math.20 (2018) 1750025, 30 pp. · Zbl 1385.42019
[13] Coifman, R. R., Lions, P.-L., Meyer, Y. and Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72(9) (1993) 247-286. · Zbl 0864.42009
[14] de P. Ablé, Z. V. and Feuto, J., Atomic decomposition of Hardy-amalgam spaces, J. Math. Anal. Appl.455 (2017) 1899-1936. · Zbl 1371.42024
[15] Z. V. de P. Ablé and J. Feuto, Duals of Hardy-amalgam spaces \(H_{\text{loc}}^{( q , p )}\) and pseudo-differential operators, preprint (2018), arXiv:1803.03595.
[16] Duoandikoetxea, J., Fourier Analysis, Graduate Studies in Mathematics, Vol. 29 (American Mathematical Society, Providence, RI, 2001). · Zbl 0969.42001
[17] Goldberg, D., A local version of real Hardy spaces, Duke Math. J.46 (1979) 27-42. · Zbl 0409.46060
[18] Ky, L. D., Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc.365 (2013) 2931-2958. · Zbl 1272.42010
[19] Ky, L. D., New Hardy spaces of Musielak-Orlicz type and boundedness of subilinear operators, Integral Equations Oper. Theory78 (2014) 115-150. · Zbl 1284.42073
[20] Liu, L., Chang, D.-C., Fu, X. and Yang, D., Endpoint boundedness of commutators on spaces of homogeneous type, Appl. Anal.96 (2017) 2408-2433. · Zbl 06816838
[21] Nakai, E. and Yabuta, K., Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan37 (1985) 207-218. · Zbl 0546.42019
[22] Rao, M. M. and Ren, Z. D., Theory of Orlicz Spaces, , Vol. 146 (Marcel Dekker, Inc., New York, 1991). · Zbl 0724.46032
[23] Rudin, W., Functional Analysis, 2nd edn., International Series in Pure and Applied Mathematics (McGraw-Hill, Inc., New York, 1991). · Zbl 0867.46001
[24] Rychkov, V. S., Littlewood-Paley theory and function spaces with \(A_p^{\text{loc}}\) weights, Math. Nachr.224 (2001) 145-180. · Zbl 0984.42011
[25] Sawano, Y., Theory of Besov Spaces, Developments in Mathematics, Vol. 56 (Springer, Singapore, 2018). · Zbl 1414.46004
[26] Sawano, Y., Ho, K.-P., Yang, D. and Yang, S., Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. (Rozprawy Mat.)525 (2017) 1-102. · Zbl 1392.42021
[27] Tang, L., Weighted local Hardy spaces and their applications, Illinois J. Math.56 (2012) 453-495. · Zbl 1408.42010
[28] Taylor, M. E., Pseudodifferential Operators and Nonlinear PDE, , Vol. 100 (Birkhäuser Boston, Inc., Boston, MA, 1991). · Zbl 0746.35062
[29] Triebel, H., Theory of Function Spaces, , Vol. 78 (Birkhäuser Verlag, Basel, 1983). · Zbl 0546.46028
[30] Triebel, H., Theory of Function Spaces. II, , Vol. 84 (Birkhäuser Verlag, Basel, 1992). · Zbl 0763.46025
[31] Wang, F., Yang, D. and Yang, S., Applications of Hardy spaces associated with ball quasi-Banach function spaces, Results Math.75(1) (2020), Article ID: 26, 58 pp. · Zbl 1431.42040
[32] Wang, S., Yang, D., Yuan, W. and Zhang, Y., Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood-Paley characterizations and real interpolation, J. Geom. Anal.31 (2021) 631-696. · Zbl 1460.42033
[33] Yang, D., Liang, Y. and Ky, L. D., Real-Variable Theory of Musielak-Orlicz Hardy Spaces, , Vol. 2182 (Springer, 2017). · Zbl 1375.42038
[34] Yang, D. and Yang, S., Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators, Dissertationes Math. (Rozprawy Mat.)478 (2011) 1-78. · Zbl 1241.46018
[35] Yang, D. and Yang, S., Local Hardy spaces of Musielak-Orlicz type and their applications, Sci. China Math.55 (2012) 1677-1720. · Zbl 1266.42055
[36] Yang, D., Yuan, W. and Zhang, Y., Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces, J. Funct. Anal.280 (2021) 108796, 74 pp. · Zbl 1457.42036
[37] Yosida, K., Functional Analysis, Reprint of the 6th edn., (Springer-Verlag, Berlin, 1995).
[38] Zhang, Y., Wang, S., Yang, D. and Yuan, W., Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math. (2020), https://doi.org/10.1007/s11425-019-1645-1. · Zbl 1476.42017
[39] Zhang, Y., Yang, D., Yuan, W. and Wang, S., Real-variable characterizations of Orlicz-slice Hardy spaces, Anal. Appl. (Singapore)17 (2019) 597-664. · Zbl 1423.42042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.