×

The systems with almost Banach-mean equicontinuity for abelian group actions. (English) Zbl 1513.37009

Summary: In this paper, we present the concept of Banach-mean equicontinuity and prove that the Banach-, Weyl- and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent. Furthermore, we obtain that the topological entropy of a transitive, almost Banach-mean equicontinuous dynamical system of Abelian group action is zero. As an application of our main result, we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B40 Topological entropy

References:

[1] Auslander, J., Mean-L-stable systems.Illinois, J Math, 3, 566-579 (1959) · Zbl 0097.11102
[2] Auslander J. Minimal Flows and Their Extensions. North-Holland, 1988 · Zbl 0654.54027
[3] Akin, E.; Auslander, J.; Berg, B., When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability (Conlumbus, OH, 1993) (Ohio State University Mathematic Research Institute Publication, 5), 25-40 (1996), Berlin: de Gruyter, Berlin · Zbl 0861.54034
[4] Beiglböck, M.; Vitaly Bergelson, V.; Fish, A., Sumset phenomenon in countable amenable groups, Adv Math, 223, 416-432 (2010) · Zbl 1187.43002 · doi:10.1016/j.aim.2009.08.009
[5] Baake, M.; Lenz, D.; Moody, R. V., Characterization of model sets by dynamical systems, Ergos Th & Dynam Sys, 27, 2, 341-382 (2007) · Zbl 1114.82022 · doi:10.1017/S0143385706000800
[6] Ceccherini-Silberstein T, Coornaert M. Cellular Automata and Groups. Springer-Verlag, 2010 · Zbl 1218.37004
[7] Denker, M.; Grillenberger, C.; Sigmund, K., Ergodic Theory on Compact Spaces (1976), Berlin: Springer, Berlin · Zbl 0328.28008 · doi:10.1007/BFb0082364
[8] Downarowicz, T.; Huczek, D.; Zhang, G., Tilings of amenable groups, J Reine Angew Math, 747, 277-298 (2019) · Zbl 1411.37017 · doi:10.1515/crelle-2016-0025
[9] Fomin, S., On dynamical systems with pure point spectrum, Dokl Akad Nauk SSSR, 77, 4, 29-32 (1951) · Zbl 0045.38803
[10] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Porter Lectures M B (1981), N J, Princeton: Princeton University Press, N J, Princeton · Zbl 0459.28023 · doi:10.1515/9781400855162
[11] Fuhrmann G, Gröger M, Lenz D. The structure of mean equicontinuous group actions. arXiv preprint. https://arxiv.org/pdf/1812.10219v1 · Zbl 1498.37011
[12] García-Ramos, F., Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy, Ergos Th & Dynam Sys, 37, 4, 1211-1237 (2017) · Zbl 1366.37019 · doi:10.1017/etds.2015.83
[13] García-Ramos, F.; Marcus, B., Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems, Discrete Contin Dyn Syst, 39, 2, 729-746 (2019) · Zbl 1409.37037 · doi:10.3934/dcds.2019030
[14] Glasner, S.; Maon, D., Rigidity in topological dynamicals, Ergos Th & Dynam Sys, 9, 309-320 (1989) · Zbl 0661.58027 · doi:10.1017/S0143385700004983
[15] Glasner, E.; Weiss, B., Sensitive dependence on initial conditions, Nonlinearity, 6, 6, 1067-1075 (1993) · Zbl 0790.58025 · doi:10.1088/0951-7715/6/6/014
[16] Huang, X.; Liu, J.; Zhu, C., The Bowen topological entropy of subsets for amenable group actions, J Math Anal Appl, 472, 2, 1678-1715 (2019) · Zbl 1406.37019 · doi:10.1016/j.jmaa.2018.12.017
[17] Li, J.; Tu, S.; Ye, X., Mean equicontinuity and mean sensitivity, Ergod Th Dynam Sys, 35, 8, 2587-2612 (2015) · Zbl 1356.37016 · doi:10.1017/etds.2014.41
[18] Huang, W., Mean equicontinuity, bounded complexity and discrete spectrum, Ergos Th & Dynam Sys, 41, 494-533 (2021) · Zbl 1456.37015 · doi:10.1017/etds.2019.66
[19] Huang, W.; Ye, X.; Zhang, G., Local entropy theory for a countable discrete amenable group action, Journal of Functional Analysis, 261, 4, 1028-1082 (2011) · Zbl 1235.37008 · doi:10.1016/j.jfa.2011.04.014
[20] Łącka, M.; Pietrzyk, M., Quasi-uniform convergence in dynamical systems generated by an amenable group action, J Lond Math Soc, 98, 2, 687-707 (2018) · Zbl 1404.37010 · doi:10.1112/jlms.12157
[21] Kerr D, Li H. Ergodic Theory:Independence and Dichotomies. Springer, 2016 · Zbl 1396.37001
[22] Parthasarathy, K. R., Probability measures on metric spaces (1967), New York: Academic Press Inc, New York · Zbl 0153.19101 · doi:10.1016/B978-1-4832-0022-4.50006-5
[23] Sigmund, K., On minimal centers of attraction and generic points, J Reine Angew Math, 295, 72-79 (1977) · Zbl 0354.54025
[24] Scarpellini, B., Stability properties of flows with pure point spectrum, J London Math Soc, 26, 2, 451-464 (1982) · Zbl 0505.28011 · doi:10.1112/jlms/s2-26.3.451
[25] Walters, P., An Introduction to Ergodic Theory (1982), New York: Springer, New York · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.