×

Sumset phenomenon in countable amenable groups. (English) Zbl 1187.43002

R. Jin [Proc. Am. Math. Soc. 130, No. 3, 855–861 (2002; Zbl 0985.03066)] proved that whenever \(A\) and \(B\) are sets of positive upper density in \(\mathbb{Z}\), \(A+ B\) is piecewise syndetic. Jin’s theorem was subsequently generalized by R. Jin and H. J. Keisler [Trans. Am. Math. Soc. 355, No. 1, 79–97 (2003; Zbl 1047.03051)] to Abelian groups with some extra structure. Answering a question of Jin and Keisler, it is shown in the paper under review that this result holds true in amenable groups, that is, in the most general setting where it can be naturally formulated.
Sharpening previously known results, the authors also prove that \(A+ B\) is piecewise Bohr, i.e. contains arbitrarily long intervals from an open set in the Bohr topology. (In the integer case this is due to V. Bergelson, H. Furstenberg and B. Weiss [Piecewise-Bohr sets of integers and combinatorial number theory. Klazar, Martin (ed.) et al., Topics in discrete mathematics. Dedicated to Jarik Nešetřil on the occasion of his 60th birthday. Berlin: Springer, Algorithms and Combinatorics 26, 13–37 (2006; Zbl 1114.37008)].) It is shown that this provides characterization of sumsets in the commutative case: a subset of an Abelian group \(G\) is piecewise Bohr if and only if it contains a sumset of two sets of positive upper Banach density.
The proofs combine combinatorial techniques with ergodic theoretic methods and the theory of almost periodic functions.
A particularly short proof of Jin’s original result is obtained through a “union version” of Furstenberg’s celebrated correspondence principle.

MSC:

43A07 Means on groups, semigroups, etc.; amenable groups
11B05 Density, gaps, topology
22B99 Locally compact abelian groups (LCA groups)

References:

[1] Beiglböck, M.; Bergelson, V.; Hindman, N.; Strauss, D., Multiplicative structures in additively large sets, J. Combin. Theory Ser. A, 113, 7, 1219-1242 (2006) · Zbl 1105.05071
[2] Bergelson, V., Ergodic Ramsey theory, Amer. J. Math., 65, 6, 63-87 (1987) · Zbl 0642.10052
[3] Bergelson, V., Ergodic theory Diophantine problems, (Topics in Symbolic Dynamics and Applications. Topics in Symbolic Dynamics and Applications, Temuco, 1997. Topics in Symbolic Dynamics and Applications. Topics in Symbolic Dynamics and Applications, Temuco, 1997, London Math. Soc. Lecture Note Ser., vol. 279 (2000), Cambridge University Press: Cambridge University Press Cambridge), 167-205 · Zbl 0972.37008
[4] Bergelson, V., Combinatorial Diophantine applications of ergodic theory, (Handbook of Dynamical Systems, vol. 1B (2006), Elsevier B.V.: Elsevier B.V. Amsterdam), 745-869, Appendix A by A. Leibman and Appendix B by Anthony Quas and Máté Wierdl · Zbl 1130.37317
[5] Bergelson, V.; McCutcheon, R., Recurrence for semigroup actions a non-commutative Schur theorem, (Topological Dynamics and Applications. Topological Dynamics and Applications, Minneapolis, MN, 1995. Topological Dynamics and Applications. Topological Dynamics and Applications, Minneapolis, MN, 1995, Contemp. Math., vol. 215 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 205-222 · Zbl 0905.28010
[6] Bergelson, V.; Rosenblatt, J., Mixing actions of groups, Illinois J. Math., 32, 1, 65-80 (1988) · Zbl 0619.43005
[7] Bergelson, V.; Furstenberg, H.; Weiss, B., Piecewise-Bohr sets of integers and combinatorial number theory, (Topics in Discrete Mathematics. Topics in Discrete Mathematics, Algorithms Combin., vol. 26 (2006), Springer-Verlag: Springer-Verlag Berlin), 13-37 · Zbl 1114.37008
[8] Berglund, J.; Junghenn, H.; Milnes, P., Analysis on Semigroups, Canad. Math. Soc. Ser. Monogr. Adv. Texts (1989), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, Function spaces, compactifications, representations. A Wiley-Interscience Publication · Zbl 0727.22001
[9] Følner, E., Generalization of a theorem of Bogolioùboff to topological abelian groups. With an appendix on Banach mean values in non-abelian groups, Math. Scand., 2, 5-18 (1954) · Zbl 0056.02703
[10] Følner, E., Note on a generalization of a theorem of Bogolioùboff, Math. Scand., 2, 224-226 (1954) · Zbl 0058.02302
[11] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory (1981), Princeton University Press: Princeton University Press Princeton, NJ, M.B. Porter lectures · Zbl 0459.28023
[12] Greenleaf, F. P., Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud., vol. 16 (1969), Van Nostrand Reinhold Co.: Van Nostrand Reinhold Co. New York · Zbl 0174.19001
[13] Hewitt, E.; Ross, K. A., Abstract Harmonic Analysis, vol. I, Grundlehren Math. Wiss., vol. 115 (1979), Springer-Verlag: Springer-Verlag Berlin, Structure of topological groups, integration theory, group representations · Zbl 0115.10603
[14] Hindman, N., Finite sums from sequences within cells of a partition of \(N\), J. Combin. Theory Ser. A, 17, 1-11 (1974) · Zbl 0285.05012
[15] Hindman, N., On density translates, and pairwise sums of integers, J. Combin. Theory Ser. A, 33, 2, 147-157 (1982) · Zbl 0496.10036
[16] Hindman, N.; Strauss, D., Algebra in the Stone-Čech Compactification, de Gruyter Exp. Math., vol. 27 (1998), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin, Theory and applications · Zbl 0918.22001
[17] Jin, R., The sumset phenomenon, Proc. Amer. Math. Soc., 130, 3, 855-861 (2002) · Zbl 0985.03066
[18] Jin, R., Standardizing nonstandard methods for upper Banach density problems, (Unusual Applications of Number Theory. Unusual Applications of Number Theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 64 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 109-124 · Zbl 1098.11009
[20] Jin, R.; Keisler, H., Abelian groups with layered tiles the sumset phenomenon, Trans. Amer. Math. Soc., 355, 1, 79-97 (2003) · Zbl 1047.03051
[21] Lindenstrauss, E., Pointwise theorems for amenable groups, Invent. Math., 146, 2, 259-295 (2001) · Zbl 1038.37004
[22] Ornstein, D.; Weiss, B., Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48, 1-141 (1987) · Zbl 0637.28015
[23] Paterson, A. L.T., Amenability, Math. Surveys Monogr., vol. 29 (1988), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0748.46027
[24] Pier, J.-P., Amenable Locally Compact Groups, Pure Appl. Math. (N. Y.) (1984), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, A Wiley-Interscience Publication · Zbl 0597.43001
[25] Rudin, W., Fourier Analysis on Groups, Intersci. Tracts Pure Appl. Math., vol. 12 (1962), Interscience Publishers (a division of John Wiley & Sons): Interscience Publishers (a division of John Wiley & Sons) New York/London · Zbl 0107.09603
[26] Wagon, S., The Banach-Tarski Paradox (1993), Cambridge University Press: Cambridge University Press Cambridge, With a foreword by Jan Mycielski, corrected reprint of the 1985 original · Zbl 0569.43001
[27] Weiss, B., Monotileable amenable groups, (Topology, Ergodic Theory, Real Algebraic Geometry. Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 257-262 · Zbl 0982.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.