×

The exact solutions of Fokas-Lenells equation based on Jacobi elliptic function expansion method. (English) Zbl 1512.35560

Summary: The Fokas-Lenells (FL) equation, which is rich in physical property in soliton theory as well as optical fiber, is a generalization of the higher-order Schrödinger equation. We construct the periodic solutions of the FL equation based on the Jacobi elliptic function expansion method in this context. Moreover, the characteristics of the obtained solutions are visualized graphically by selecting appropriate parameters.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35B10 Periodic solutions to PDEs

References:

[1] John, R. B.; Francis, P. B., The critical layer for internal gravity waves in a shear flow, J. Fluid Mech., 27, 3, 513-539 (1967) · Zbl 0148.23101 · doi:10.1017/S0022112067000515
[2] Labidi, M.; Ebadi, G.; Zerrad, E.; Biswas, A., Analytical and numerical solutions of the Schrödinger-KdV equation, Pramana J. Phys., 78, 1, 59-90 (2012) · doi:10.1007/s12043-011-0212-2
[3] Biswas, A.; Rezazadeh, H.; Mirzazadeh, M., Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes, Optik, 165, 288-294 (2018) · doi:10.1016/j.ijleo.2018.03.132
[4] Liu, Y.; Li, B.; An, H. L., General high-order breathers, lumps in the (2 + 1)-dimensional Boussinesq equation, Nonlinear Dyn., 92, 4, 2061-2076 (2018) · doi:10.1007/s11071-018-4181-6
[5] Zhou, Q.; Biswas, A., Optical soliton in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity, Superlattices Microstruct., 109, 588-598 (2017) · doi:10.1016/j.spmi.2017.05.049
[6] Xu, H.; Ma, Z.; Fei, J.; Zhu, Q., Novel characteristics of lump and lump-soliton interaction solutions to the generalized variable-coefficient Kadomtsev-Petviashvili equation, Nonlinear Dyn., 98, 1, 551-560 (2019) · Zbl 1430.74075 · doi:10.1007/s11071-019-05211-2
[7] Shen, S.; Yang, Z. J.; Pang, Z. G.; Ge, Y. R., The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022) · Zbl 1479.78021 · doi:10.1016/j.aml.2021.107755
[8] Osman, M. S.; Machado, J. A.T.; Baleanu, D., On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable coefficients, Opt. Quantum Electron., 50, 2, 1-11 (2018) · doi:10.1007/s11082-018-1346-y
[9] Abdel-Gawad, H. I.; Tantawy, M.; Osman, M. S., Dynamic of DNA′s possible impact on its damage, Math. Methods Appl. Sci., 39, 2, 168-176 (2016) · Zbl 1334.35356 · doi:10.1002/mma.3466
[10] Lü, X.; Lin, F., Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order, Commun. Nonlinear Sci. Numer. Simul., 32, 241-261 (2016) · Zbl 1510.35309 · doi:10.1016/j.cnsns.2015.08.008
[11] Arshad, M.; Seadawy, A. R.; Lu, D. C., Exact bright-dark solitary wave solutions of the higher-order cubicquintic nonlinear Schrödinger equation and its stability, Optik, 128, 40-49 (2017) · doi:10.1016/j.ijleo.2017.03.005
[12] Arshad, M.; Seadawy, A. R.; Lu, D. C., Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications, Opt. Quantum Electron., 50 (2017) · doi:10.1007/s11082-017-1260-8
[13] Eslami, M.; Neirameh, A., New exact solutions for higher order nonlinear Schrödinger equation in optical fibers, Opt. Quantum Electron., 50 (2018) · doi:10.1007/s11082-017-1310-2
[14] Lu, C. N.; Fu, C.; Yang, H. W., Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl. Math. Comput., 327, 104-116 (2018) · Zbl 1426.76721
[15] Liu, J. G.; Tian, Y.; Hu, J. G., New non-traveling wave solutions for the (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Lett., 79, 162-168 (2018) · Zbl 1459.35071 · doi:10.1016/j.aml.2017.12.011
[16] Liu, J. G., Lump-type solutions and interaction solutions for the (2 + 1)-dimensional generalized fifth-order KdV equation, Appl. Math. Lett., 86, 36-41 (2018) · Zbl 1410.35175 · doi:10.1016/j.aml.2018.06.011
[17] Song, L. M.; Yang, Z. J.; Zhang, S. M.; Li, X. L., Dynamics of rotating Laguerre-Gaussian soliton arrays, Opt. Express, 27, 19, 26331-26345 (2019) · doi:10.1364/OE.27.026331
[18] Gao, X. Y., Mathematical view with observational experimental consideration on certain (2 + 1)-dimensional waves in the cosmic laboratory dusty plasmas, Appl. Math. Lett., 91, 165-172 (2019) · Zbl 1445.76101 · doi:10.1016/j.aml.2018.11.020
[19] Ding, C. C.; Gao, Y. T.; Li, L. Q., Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanovequation for the Alfvé waves in an astrophysical plasma, Chaos Solitons Fractals, 120, 259-265 (2019) · Zbl 1448.35084 · doi:10.1016/j.chaos.2019.01.007
[20] Biswas, A., Optical soliton perturbation with Radhakrishnan-Kundu-Laksmanan equation by traveling wave hypothesis, Optik, 171, 217-220 (2018) · doi:10.1016/j.ijleo.2018.06.043
[21] Tchokouansi, H. T.; Kuetche, V. K.; Kofane, T. C., On the propagation of solitons in ferrites: the inverse scattering approach, Chaos Solitons Fractals, 86, 64-74 (2016) · Zbl 1360.35266 · doi:10.1016/j.chaos.2016.02.032
[22] Tchokouansi, H. T.; Kuetche, V. K.; Kofane, T. C., Exact soliton solutions to a new coupled integrable short light-pulse system, Chaos Solitons Fractals, 68, 10-19 (2014) · Zbl 1354.35015 · doi:10.1016/j.chaos.2014.07.002
[23] Younis, M.; Sulaiman, T. A.; Bilal, M.; Rehman, S. U.; Younas, U., Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation, Commun. Theor. Phys., 72, 6 (2020) · Zbl 1451.82022 · doi:10.1088/1572-9494/ab7ec8
[24] Younis, M., Optical solitons in (n + 1) dimensions with Kerr and power law nonlinearities, Mod. Phys. Lett. B, 31, 15 (2017) · doi:10.1142/S021798491750186X
[25] Younis, M.; Bilal, M.; Shafqat-ur-Rehman; Younas, U.; Rizvi, S. T.R., Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect, Int. J. Mod. Phys. B, 34, 11 (2020) · Zbl 1439.35453 · doi:10.1142/S0217979220501131
[26] Ali, S.; Younis, M., Rogue wave solutions and modulation instability with variable coefficient and harmonic potential, Front. Phys., 7, 255-262 (2020) · doi:10.3389/fphy.2019.00255
[27] Younas, B.; Younis, M., Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation, Pramana J. Phys., 94, 1, 1-5 (2020) · doi:10.1007/s12043-019-1872-6
[28] Agrawal, G. P., Nonlinear fiber optics: its history and recent progress, J. Opt. Soc. Am. B, 28, 12, A1-A10 (2011) · doi:10.1364/JOSAB.28.0000A1
[29] Biondini, G.; Kovacic, G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55, 3 (2014) · Zbl 1298.35187 · doi:10.1063/1.4868483
[30] Fokas, A. S., On a class of physically important integrable equations, Physica D, 87, 1-4, 145-150 (1995) · Zbl 1194.35363 · doi:10.1016/0167-2789(95)00133-O
[31] Lenells, J., Exactly solvable model for nonlinear pulse prop-agation in optical fibers, Stud. Appl. Math., 123, 2, 215-232 (2009) · Zbl 1171.35473 · doi:10.1111/j.1467-9590.2009.00454.x
[32] Wang, X.; Wei, J.; Wang, L.; Zhang, J. L., Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation, Nonlinear Dyn., 97, 1, 343-353 (2019) · Zbl 1430.37077 · doi:10.1007/s11071-019-04972-0
[33] Lenells, J.; Fokas, A. S., On a novel integrable generalization of the nonlinear Schrödinger equation, Nonlinearity, 22, 1, 11-27 (2008) · Zbl 1160.35536 · doi:10.1088/0951-7715/22/1/002
[34] Lenells, J.; Fokas, A. S., An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons, Inverse Probl., 25, 11 (2009) · Zbl 1181.35335 · doi:10.1088/0266-5611/25/11/115006
[35] Biswas, A.; Ekici, M.; Sonmezoglu, A.; Alqahtani, R. T., Optical soliton perturbation with full nonlinearity for Fokas-Lenells equation, Optik, 165, 29-34 (2018) · doi:10.1016/j.ijleo.2018.03.094
[36] Biswas, A.; Ekici, M., Optical solitons with differential group delay for coupled Fokas-Lenells equation by extended trial function scheme, Optik, 165, 102-110 (2018) · doi:10.1016/j.ijleo.2018.03.102
[37] Zhang, Q. Y.; Zhang, Y.; Ye, R., Exact solutions of nonlocal Fokas-Lenells equation, Appl. Math. Lett., 98, 336-343 (2019) · Zbl 1428.35545 · doi:10.1016/j.aml.2019.05.015
[38] He, J. S.; Xu, S. W.; Porseziam, K., Rogue waves of the Fokas-Lennels equation, J. Phys. Soc. Jpn., 81 (2012) · doi:10.1143/JPSJ.81.124007
[39] Zhang, Y.; Yang, J. M.; Chow, K. W.; Wu, F., Solitons breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation, Nonlinear Anal., Real World Appl., 33, 237-252 (2017) · Zbl 1352.35170 · doi:10.1016/j.nonrwa.2016.06.006
[40] Xu, S. W.; He, J. S.; Cheng, Y.; Porseizan, K., The n-order rogue waves of Fokas-Lenells equation, Math. Methods Appl. Sci., 38, 6, 1106-1126 (2015) · Zbl 1318.35112 · doi:10.1002/mma.3133
[41] Triki, H.; Wazwaz, A. M., Combined optical solitary waves of the Fokas-Lenells equation, Waves Random Complex Media, 27, 4, 587-593 (2017) · Zbl 07659360 · doi:10.1080/17455030.2017.1285449
[42] Matsuno, Y., A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions, J. Phys. A, Math. Theor., 45, 47 (2012) · Zbl 1253.82068 · doi:10.1088/1751-8113/45/47/475202
[43] Arshed, S.; Biswas, A.; Zhou, Q.; Khan, S.; Adesanya, S.; Moshokoa, S. P.; Belic, M., Optical solitons pertutabation with Fokas-Lenells equation by \(\exp(-\varphi (\xi ))\)-expansion method, Optik, 179, 341-345 (2019) · doi:10.1016/j.ijleo.2018.10.136
[44] Li, J. B.; Zhang, Y.; Liang, J. L., Bifurcations and exact travelling wave solutions for a new integrable nonlocal equation, J. Appl. Anal. Comput., 11, 3, 1588-1599 (2021) · Zbl 07905189
[45] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 1-2, 69-74 (2001) · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[46] El-Wakil, S. A.; Abdou, M. A.; Elhanbaly, A., New solitons and periodic wave solutions for nonlinear evolution equations, Phys. Lett. A, 353, 1, 40-47 (2006) · doi:10.1016/j.physleta.2005.12.055
[47] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, 290, 72-76 (2001) · Zbl 0977.35094 · doi:10.1016/S0375-9601(01)00644-2
[48] Fan, E. G.; Zhang, J., Applications of Jacobi elliptic function method to special type nonlinear equations, Phys. Lett. A, 305, 383-392 (2002) · Zbl 1005.35063 · doi:10.1016/S0375-9601(02)01516-5
[49] Chen, Y.; Wang, Q., A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations, Appl. Math. Comput., 173, 1163-1182 (2006) · Zbl 1088.65087
[50] Bhrawy, A. H.; Hao, M. A.; Biswas, A., Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method, Commun. Nonlinear Sci. Numer. Simul., 18, 4, 915-925 (2013) · Zbl 1261.35044 · doi:10.1016/j.cnsns.2012.08.034
[51] Zhang, H. Q., Extended Jacobi elliptic function expansion method and its applications, Commun. Nonlinear Sci. Numer. Simul., 12, 5, 627-635 (2007) · Zbl 1111.35317 · doi:10.1016/j.cnsns.2005.08.003
[52] Abdou, M. A.; Elhanbaly, A., Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method, Commun. Nonlinear Sci. Numer. Simul., 12, 7, 1229-1241 (2007) · Zbl 1350.35166 · doi:10.1016/j.cnsns.2006.01.013
[53] Zafar, A.; Raheel, M.; Ali, K. K.; Razzaq, W., On optical soliton solutions of new Hamiltonian amplitude equation via Jacobi elliptic functions, Eur. Phys. J. Plus, 135, 8 (2020) · doi:10.1140/epjp/s13360-020-00694-0
[54] Murali, R.; Porsezian, K.; Kofane, T. C.; Mohamadou, A., Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation, J. Phys. A, Math. Theor., 43, 16 (2010) · Zbl 1189.35319 · doi:10.1088/1751-8113/43/16/165001
[55] Zhang, J.; Abdelkawy, H. Q., Soliton solutions of the AB system via the Jacobi elliptic function expansion method, Optik, 244 (2021) · doi:10.1016/j.ijleo.2021.167541
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.