×

The higher-dimensional tropical vertex. (English) Zbl 1512.14021

This paper is a contribution to the topics of mirror symmetry and Gromov-Witten (GW) theory. From the GW point of view, it gives a large class of examples in which the newly defined punctured log GW invariants are computed. From the mirror symmetry point of view, it gives a large class of examples of dimension \(\geq 3\) of the Gross-Siebert approach to mirror symmetry based on curve counting invariants.
Let \((X, D)\) be a log Calabi-Yau variety which admits a toric model, i.e. which is obtained by blowing up a toric variety along hypersurfaces of the toric boundary divisors. Gross and Siebert have defined the canonical scattering diagram of \((X, D)\), which is an object encoding a class of enumerative invariants of \((X, D)\) called punctured log GW invariants. The main result of the paper is that the canonical scattering diagram can be computed in an entirely algorithmic manner, without reference to enumerative geometry. In particular, the punctured log GW invariants can be efficiently computed.
The main result is a generalization in arbitrary dimension of the paper “The tropical vertex” by Gross-Pandharipande-Siebert in dimension 2. Whereas the 2-dimensional case uses log GW theory, i.e. virtual counts of \(X\) with presribed tangency conditions along \(D\), the higher-dimensional case requires the more general punctured log GW theory developped by Abramovich-Chen-Gross-Siebert, in which negative contact orders with \(D\) are allowed.
The paper also includes concrete non-trivial examples in dimension 3 such as the blow-up of \(\mathbb{P}^3\) along two disjoint lines.

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

References:

[1] 10.4310/AJM.2014.v18.n3.a5 · Zbl 1321.14025 · doi:10.4310/AJM.2014.v18.n3.a5
[2] 10.1112/s0010437x20007393 · Zbl 1476.14093 · doi:10.1112/s0010437x20007393
[3] 10.1007/978-3-319-30945-3_9 · Zbl 1364.14047 · doi:10.1007/978-3-319-30945-3_9
[4] 10.4171/JEMS/728 · Zbl 1453.14081 · doi:10.4171/JEMS/728
[5] 10.1112/plms.12324 · Zbl 1464.14043 · doi:10.1112/plms.12324
[6] 10.2140/gt.2020.24.1297 · Zbl 1451.14158 · doi:10.2140/gt.2020.24.1297
[7] 10.1007/s00029-020-00580-8 · Zbl 1455.14103 · doi:10.1007/s00029-020-00580-8
[8] 10.4310/PAMQ.2013.v9.n4.a4 · Zbl 1305.81119 · doi:10.4310/PAMQ.2013.v9.n4.a4
[9] 10.1090/pspum/073/2131017 · Zbl 1085.53080 · doi:10.1090/pspum/073/2131017
[10] 10.2307/1999812 · Zbl 0561.57014 · doi:10.2307/1999812
[11] 10.1007/s10240-015-0073-1 · Zbl 1351.14024 · doi:10.1007/s10240-015-0073-1
[12] 10.1090/jams/890 · Zbl 1446.13015 · doi:10.1090/jams/890
[13] 10.1090/memo/1367 · Zbl 1502.14001 · doi:10.1090/memo/1367
[14] 10.1215/00127094-2010-025 · Zbl 1205.14069 · doi:10.1215/00127094-2010-025
[15] 10.4007/annals.2011.174.3.1 · Zbl 1266.53074 · doi:10.4007/annals.2011.174.3.1
[16] 10.1090/S0894-0347-2012-00757-7 · Zbl 1281.14044 · doi:10.1090/S0894-0347-2012-00757-7
[17] ; Gross, Mark; Siebert, Bernd, Local mirror symmetry in the tropics, Proceedings of the International Congress of Mathematicians, II, 723 (2014) · Zbl 1373.14041
[18] 10.1090/pspum/097.2/01705 · Zbl 1448.14039 · doi:10.1090/pspum/097.2/01705
[19] 10.1007/s00222-022-01126-9 · Zbl 1502.14090 · doi:10.1007/s00222-022-01126-9
[20] 10.4007/annals.2003.157.45 · Zbl 1039.53101 · doi:10.4007/annals.2003.157.45
[21] 10.1007/s00222-015-0640-6 · Zbl 1360.14056 · doi:10.1007/s00222-015-0640-6
[22] 10.1007/0-8176-4467-9_9 · Zbl 1114.14027 · doi:10.1007/0-8176-4467-9\_9
[23] 10.1007/s002220100146 · Zbl 1062.53073 · doi:10.1007/s002220100146
[24] ; Li, Jun, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509 (2001) · Zbl 1076.14540
[25] 10.1112/jlms.12498 · Zbl 1516.14114 · doi:10.1112/jlms.12498
[26] 10.1090/tran/8398 · Zbl 1480.14030 · doi:10.1090/tran/8398
[27] 10.1090/S1056-3911-2011-00606-1 · Zbl 1328.14019 · doi:10.1090/S1056-3911-2011-00606-1
[28] 10.1112/s0010437x19007152 · Zbl 1420.14093 · doi:10.1112/s0010437x19007152
[29] ; Oda, Tadao, Convex bodies and algebraic geometry: an introduction to the theory of toric varieties. Ergeb. Math. Grenzgeb., 15 (1988) · Zbl 0628.52002
[30] 10.1017/9781316941614 · Zbl 1437.14003 · doi:10.1017/9781316941614
[31] 10.1016/j.ansens.2002.11.001 · Zbl 1069.14022 · doi:10.1016/j.ansens.2002.11.001
[32] 10.2140/gt.2019.23.2701 · Zbl 1429.53100 · doi:10.2140/gt.2019.23.2701
[33] 10.1016/0550-3213(96)00434-8 · Zbl 0896.14024 · doi:10.1016/0550-3213(96)00434-8
[34] 10.1007/PL00005567 · Zbl 1066.14048 · doi:10.1007/PL00005567
[35] 10.1007/s00208-016-1376-3 · Zbl 1375.14186 · doi:10.1007/s00208-016-1376-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.