×

The dual complex of Calabi-Yau pairs. (English) Zbl 1360.14056

A log Calabi-Yau variety is a pair \((X, \Delta)\) such that \(X\) is a proper variety and \(\Delta\) an effective \(\mathbb Q\)-divisor on \(X\) such that \(K_X + \Delta\) is \(\mathbb Q\)-linearly equivalent to \(0\) and the pair \((X, \Delta)\) has at most log-canonical singularities. Let \(g: Y \rightarrow X\) be a log-resolution of the pair \((X, \Delta)\), then there is a unique divisor \(\Delta_Y\) such that \(g_* \Delta_Y = \Delta\) and \(g^*(K_X+\Delta) \sim_{\mathbb Q} K_Y + \Delta_Y\). Since \((X, \Delta)\) is log-canonical, the coefficients in \(\Delta_Y\) are at most one and the divisor \(\Delta_Y^{=1}\) formed by the components with coefficient equal to one is of special interest. In fact de Fernex and the authors showed in a recent paper [“The dual complex of singularities”, arXiv:1212.1675] that the dual complex \(\mathcal{DMR}(X, \Delta)\) of \(\Delta_Y^{=1}\) is independent of the choice of \((Y, \Delta_Y)\), up-to PL-homeomorphism.
In this paper the authors study the topological invariants of the dual complex. They prove that if \(\mathcal{DMR}(X, \Delta)\) has (real) dimension \(d \geq 2\), then the rational cohomology \(H^i(\mathcal{DMR}(X, \Delta), \mathbb Q)\) vanishes for all \(0<i<d\). Moreover they prove that there is a natural surjection \[ \pi_1(X^{\text{sm}}) \twoheadrightarrow \pi_1(\mathcal{DMR}(X, \Delta)). \] In particular, by earlier results of Greb-Kebekus-Peternell [D. Greb et al., Duke Math. J. 165, No. 10, 1965–2004 (2016; Zbl 1360.14094)] and the second author C. Xu [Compos. Math. 150, No. 3, 409–414 (2014; Zbl 1291.14057)], the profinite completion of the fundamental group is finite. In low dimension additional arguments lead to a more precise description: if \(\dim X \leq 4\), then the dual complex \(\mathcal{DMR}(X, \Delta)\) is \(PL\)-homeomorphic to the quotient of a sphere by a finite group. A second application concerns degenerations of Calabi-Yau manifolds, i.e. proper families \(Y \rightarrow \Delta\) such that \(K_Y\) is trivial and for the central fibre \(Y_0\) the pair \((\mathcal Y, \mathcal Y_0)\) is dlt. If the general fibres are Calabi-Yau in the strict sense and the dual complex \(\mathcal D(Y_0)\) of the central fibre has maximal dimension, the authors ask if \(\mathcal D(Y_0)\) is \(PL\)-homeomorphic to a sphere. They give a positive answer if \(\dim X \leq 3\) or \(\dim X=4\) and the central fibre is a SNC divisor.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
14J17 Singularities of surfaces or higher-dimensional varieties
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[2] Birkar, C.: Existence of log canonical flips and a special LMMP. Publ. Math. Inst. Hautes Études Sci. 325-368 (2012) · Zbl 1256.14012
[3] Brown, M., McKernan, J., Svladi, R., Zong, H.: A geometric characterization of toric varieties (in preparation) (2015) · Zbl 1058.14024
[4] Campana, F.: On twistor spaces of the class \[CC\]. J. Differ. Geom. 33(2), 541-549 (1991) · Zbl 0694.32017
[5] Corti, A., Kaloghiros, A.-S.: The Sarkisov program for Mori fibred Calabi-Yau pairs (2015) · Zbl 1437.14024
[6] de Fernex, T., Kollár, J., Xu, C.: The dual complex of singularities. ArXiv e-prints (2012) · Zbl 1388.14107
[7] Friedman, R., Morrison, D.R. (eds.) The birational geometry of degenerations. Progr. Math., vol. 29. Birkhäuser Boston, Mass (1983) · Zbl 0508.14024
[8] Fox, R.H.: Covering spaces with singularities. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, pp. 243-257 (1957) · Zbl 0079.16505
[9] Fujita, T.: Zariski decomposition and canonical rings of elliptic threefolds. J. Math. Soc. Jpn. 38(1), 19-37 (1986) · Zbl 0627.14031 · doi:10.2969/jmsj/03810019
[10] Graber, T., Harris, J., Starr, Jason: Families of rationally connected varieties. J. Am. Math. Soc. 16(1), 57-67 (2003). (electronic) · Zbl 1092.14063 · doi:10.1090/S0894-0347-02-00402-2
[11] Greb, D., Kebekus, S., Peternell, T.: Etale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of Abelian varieties. ArXiv e-prints (2013) · Zbl 1360.14094
[12] Goresky, M., MacPherson, Robert: Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 14. Springer, Berlin (1988) · Zbl 0639.14012
[13] Griffiths, P., Schmid, W.: Recent developments in Hodge theory: a discussion of techniques and results. Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), pp. 31-127. Oxford Univ. Press, Bombay (1975) · Zbl 0819.14006
[14] Goldman, W.M., Toledo, D.: Affine cubic surfaces and relative SL(2)-character varieties of compact surfaces. ArXiv e-prints (2010) · Zbl 1210.14019
[15] Hatcher, Allen: Algebraic topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[16] Hempel, J.: Residual finiteness for 3-manifolds Combinatorial group theory andtopology (Alta, Utah, 1984), Ann. of Math. Stud., vol. 111, pp. 379-396. Princeton Univ. Press,Princeton, NJ. MR 895623 (89b:57002) (1987) · Zbl 0772.57002
[17] Hironaka, H.: Subanalytic sets. Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, pp. 453-493 (1973) · Zbl 1092.14063
[18] Hacon, C.D., Xu, C.: Existence of log canonical closures. Invent. Math. 192(1), 161-195 (2013) · Zbl 1282.14027 · doi:10.1007/s00222-012-0409-0
[19] Kawamata, Y.: Subadjunction of log canonical divisors. II. Am. J. Math. 120(5), 893-899 (1998) · Zbl 0919.14003 · doi:10.1353/ajm.1998.0038
[20] Kapovich, M., Kollár, J.: Fundamental groups of links of isolated singularities. J. Am. Math. Soc. 27(4), 929-952 (2014) · Zbl 1307.14005 · doi:10.1090/S0894-0347-2014-00807-9
[21] Kollár, J., Larsen, M.: Quotients of Calabi-Yau varieties. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. vol. II, Progr. Math., vol. 270, pp. 179-211. Birkhäuser Boston Inc., Boston, MA (2009) · Zbl 1200.14074
[22] Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original · Zbl 0926.14003
[23] Kollár, J., Miyaoka, Y., Mori, S.: Rationally connected varieties. J. Algebraic Geom. 1(3), 429-448 (1992) · Zbl 0780.14026
[24] Kollár, J.: Shafarevich maps and plurigenera of algebraic varieties. Invent. Math. 113(1), 177-215 (1993) · Zbl 0819.14006 · doi:10.1007/BF01244307
[25] Kollár, J.: Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 32. Springer, Berlin (1996) · Zbl 0877.14012
[26] Kollár, J.: Kodaira’s canonical bundle formula and adjunction. Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, pp. 134-162. Oxford Univ. Press, Oxford (2007) · Zbl 1286.14027
[27] Kollár, J.: Sources of log canonical centers. arXiv:1107.2863 (2011) · Zbl 1369.14013
[28] Kollár, J.: Singularities of the minimal model program. Cambridge Tracts in Mathematics, vol. 200. Cambridge University Press, Cambridge, 2013, With the collaboration of Sándor Kovács · Zbl 1282.14028
[29] Kollár, J.: Simple normal crossing varieties with prescribed dual complex. Algebr. Geom. 1(1), 57-68 (2014) · Zbl 1307.14059 · doi:10.14231/AG-2014-004
[30] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203-263. World Sci. Publ., River Edge, NJ (2001) · Zbl 1072.14046
[31] Kulikov, V.S.: Degenerations of \[K3\] K3 surfaces and Enriques surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 1008-1042 (1977). 1199 · Zbl 0367.14014
[32] Liu, Y.: Dodecahedron realization problem, (in preparation) (2015)
[33] Miyaoka, Y., Mori, Shigefumi: A numerical criterion for uniruledness. Ann. Math. (2) 124(1), 65-69 (1986) · Zbl 0606.14030 · doi:10.2307/1971387
[34] Simpson, C.: The boundary of character varieties, (lecture at IAS) (2015)
[35] Takayama, S.: Local simple connectedness of resolutions of log-terminal singularities. Internat. J. Math. 14(8), 825-836 (2003) · Zbl 1058.14024 · doi:10.1142/S0129167X0300196X
[36] Xu, C.: Finiteness of algebraic fundamental groups. Compos. Math. 150(3), 409-414 (2014) · Zbl 1291.14057 · doi:10.1112/S0010437X13007562
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.