×

The Bayes rule of the parameter in \((0,1)\) under Zhang’s loss function with an application to the beta-binomial model. (English) Zbl 1511.62050

Summary: For the restricted parameter space \((0,1)\), we propose Zhang’s loss function which satisfies all the 7 properties for a good loss function on \((0,1)\). We then calculate the Bayes rule (estimator), the posterior expectation, the integrated risk, and the Bayes risk of the parameter in \((0,1)\) under Zhang’s loss function. We also calculate the usual Bayes estimator under the squared error loss function, and the Bayes estimator has been proved to underestimate the Bayes estimator under Zhang’s loss function. Finally, the numerical simulations and a real data example of some monthly magazine exposure data exemplify our theoretical studies of two size relationships about the Bayes estimators and the Posterior Expected Zhang’s Losses (PEZLs).

MSC:

62F10 Point estimation
62F15 Bayesian inference
62H12 Estimation in multivariate analysis

Software:

rgl
Full Text: DOI

References:

[1] Adler, D., and Murdoch, D.. 2016. RGL: 3D Visualization Using OpenGL. R package version 0.95.1441.
[2] Berger, J. O., Statistical decision theory and Bayesian analysis (1985), New York: Springer, New York · Zbl 0572.62008
[3] Berger, J. O., The case for objective Bayesian analysis, Bayesian Analysis, 1, 3, 385-402 (2006) · Zbl 1331.62042 · doi:10.1214/06-BA115
[4] Berger, J. O.; Bernardo, J. M.; Sun, D. C., Overall objective priors, Bayesian Analysis, 10, 1, 189-221 (2015) · Zbl 1335.62039 · doi:10.1214/14-BA915
[5] Bobotas, P.; Kourouklis, S., On the estimation of a normal precision and a normal variance ratio, Statistical Methodology, 7, 4, 445-63 (2010) · Zbl 1463.62047 · doi:10.1016/j.stamet.2010.01.001
[6] Brown, L. D., Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters, The Annals of Mathematical Statistics, 39, 1, 29-48 (1968) · Zbl 0162.49901 · doi:10.1214/aoms/1177698503
[7] Brown, L. D., Comment on the paper by Maatta and Casella, Statistical Science, 5, 1, 103-6 (1990)
[8] Casella, G.; Berger, R. L., Statistical inference (2002), Pacific Grove, CA: Duxbury Press, Pacific Grove, CA
[9] Danaher, P. J., A Markov mixture model for magazine exposure, Journal of the American Statistical Association, 84, 408, 922-6 (1989) · doi:10.2307/2290067
[10] Dey, D.; Srinivasan, C., Estimation of a covariance matrix under stein’s loss, The Annals of Statistics, 13, 4, 1581-91 (1985) · Zbl 0582.62042 · doi:10.1214/aos/1176349756
[11] James, W., and Stein, C.. 1961. Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, p. 361-380. · Zbl 1281.62026
[12] Konno, Y., Estimation of a normal covariance matrix with incomplete data under stein’s loss, Journal of Multivariate Analysis, 52, 2, 308-24 (1995) · Zbl 0816.62043 · doi:10.1006/jmva.1995.1016
[13] Konno, Y., Estimation of normal covariance matrices parametrized by irreducible symmetric cones under stein’s loss, Journal of Multivariate Analysis, 98, 2, 295-316 (2007) · Zbl 1105.62058 · doi:10.1016/j.jmva.2006.06.006
[14] Luo, R.; Paul, S., Estimation for zero-inflated beta-binomial regression model with missing response data, Statistics in Medicine, 37, 26, 3789-813 (2018)
[15] Ma, T. F.; Jia, L. J.; Su, Y. S., A new estimator of covariance matrix, Journal of Statistical Planning and Inference, 142, 2, 529-36 (2012) · Zbl 1428.62234 · doi:10.1016/j.jspi.2011.08.010
[16] Maatta, J. M.; Casella, G., Developments in decision-theoretic variance estimation, Statistical Science, 5, 1, 90-120 (1990) · Zbl 0955.62529 · doi:10.1214/ss/1177012263
[17] Oono, Y.; Shinozaki, N., On a class of improved estimators of variance and estimation under order restriction, Journal of Statistical Planning and Inference, 136, 8, 2584-605 (2006) · Zbl 1090.62017 · doi:10.1016/j.jspi.2004.10.023
[18] Parsian, A.; Nematollahi, N., Estimation of scale parameter under entropy loss function, Journal of Statistical Planning and Inference, 52, 1, 77-91 (1996) · Zbl 0846.62021 · doi:10.1016/0378-3758(95)00026-7
[19] Petropoulos, C.; Kourouklis, S., Estimation of a scale parameter in mixture models with unknown location, Journal of Statistical Planning and Inference, 128, 1, 191-218 (2005) · Zbl 1058.62022 · doi:10.1016/j.jspi.2003.09.028
[20] Raiffa, H.; Schlaifer, R., Applied statistical decision theory (1961), Cambridge: Harvard University Press, Cambridge · Zbl 0181.21801
[21] Robert, C. P., The Bayesian choice: From decision-theoretic motivations to computational implementation (2007), New York: Springer, New York · Zbl 1129.62003
[22] Sheena, Y.; Takemura, A., Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of stein’s loss, Journal of Multivariate Analysis, 41, 1, 117-31 (1992) · Zbl 0764.62006 · doi:10.1016/0047-259X(92)90061-J
[23] Singh, S. K.; Singh, U.; Sharma, V. K., Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively type-ii censored sample where removals follow the beta-binomial probability law, Applied Mathematics and Computation, 222, 402-19 (2013) · Zbl 1329.62400 · doi:10.1016/j.amc.2013.07.058
[24] Stein, C., Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Annals of the Institute of Statistical Mathematics, 16, 1, 155-60 (1964) · Zbl 0144.41405 · doi:10.1007/BF02868569
[25] Sun, X. Q.; Sun, D. C.; He, Z. Q., Bayesian inference on multivariate normal covariance and precision matrices in a star-shaped model with missing data, Communications in Statistics - Theory and Methods, 39, 4, 642-66 (2010) · Zbl 1188.62174 · doi:10.1080/03610920902774251
[26] Tsukuma, H., Estimation of a high-dimensional covariance matrix with the stein loss, Journal of Multivariate Analysis, 148, 1-17 (2016) · Zbl 1341.62134 · doi:10.1016/j.jmva.2016.02.012
[27] Xu, K.; He, D. J., Further results on estimation of covariance matrix, Statistics and Probability Letters, 101, 11-20 (2015) · Zbl 1327.62351 · doi:10.1016/j.spl.2015.02.022
[28] Ye, R. D.; Wang, S. G., Improved estimation of the covariance matrix under stein’s loss, Statistics and Probability Letters, 79, 6, 715-21 (2009) · Zbl 1157.62036 · doi:10.1016/j.spl.2008.10.024
[29] Zhang, Y. Y., The Bayes rule of the variance parameter of the hierarchical normal and inverse gamma model under stein’s loss, Communications in Statistics - Theory and Methods, 46, 14, 7125-33 (2017) · Zbl 1462.62164 · doi:10.1080/03610926.2016.1148733
[30] Zhang, Y. Y.; Zhou, M. Q.; Xie, Y. H.; Song, W. H., The Bayes rule of the parameter in (0,1) under the power-log loss function with an application to the beta-binomial model, Journal of Statistical Computation and Simulation, 87, 14, 2724-37 (2017) · Zbl 1492.62055 · doi:10.1080/00949655.2017.1343332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.