×

Overall objective priors. (English) Zbl 1335.62039

Summary: In multi-parameter models, reference priors typically depend on the parameter or quantity of interest, and it is well known that this is necessary to produce objective posterior distributions with optimal properties. There are, however, many situations where one is simultaneously interested in all the parameters of the model or, more realistically, in functions of them that include aspects such as prediction, and it would then be useful to have a single objective prior that could safely be used to produce reasonable posterior inferences for all the quantities of interest. In this paper, we consider three methods for selecting a single objective prior and study, in a variety of problems including the multinomial problem, whether or not the resulting prior is a reasonable overall prior.

MSC:

62F15 Bayesian inference
62E15 Exact distribution theory in statistics

References:

[1] Bar-Lev, S. K. and Reiser, B. (1982). An exponential subfamily which admits UMPU tests based on a single test statistic. The Annals of Statistics 10 , 979-989. · Zbl 0494.62029 · doi:10.1214/aos/1176345888
[2] Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association 84 , 200-207. · Zbl 0682.62018 · doi:10.2307/2289864
[3] Berger, J. O. and Bernardo, J. M. (1992a). On the development of reference priors. Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 35-60 (with discussion).
[4] Berger, J. O. and Bernardo, J. M. (1992b). Ordered group reference priors, with applications to multinomial problems. Biometrika 79 , 25-37. · Zbl 0763.62014 · doi:10.1093/biomet/79.1.25
[5] Berger, J. O., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics 37 , 905-938. · Zbl 1162.62013 · doi:10.1214/07-AOS587
[6] Berger, J. O., Bernardo, J. M. and Sun, D. (2012). Objective priors for discrete parameter spaces. Journal of the American Statistical Association 107 , 636-648. · Zbl 1261.62023 · doi:10.1080/01621459.2012.682538
[7] Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model. The Annals of Statistics 36 , 963-982. · Zbl 1133.62014 · doi:10.1214/07-AOS501
[8] Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society, Series B 41 , 113-147 (with discussion). · Zbl 0428.62004
[9] Bernardo, J. M. (2005). Reference analysis. Bayesian Thinking: Modeling and Computation, Handbook of Statistics 25 (D. K. Dey and C. R Rao, eds). Amsterdam: Elsevier, 17-90. · doi:10.1016/S0169-7161(05)25002-2
[10] Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing. Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) Oxford: University Press, 1-68 (with discussion). · doi:10.1093/acprof:oso/9780199694587.003.0001
[11] Bernardo, J. M. (2006). Intrinsic point estimation of the normal variance. Bayesian Statistics and its Applications . (S. K. Upadhyay, U. Singh and D. K. Dey, eds.) New Delhi: Anamaya Pub, 110-121.
[12] Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory . Chichester: Wiley. · Zbl 0796.62002
[13] Clarke, B. and Barron, A. (1994). Jeffreys’ prior is the reference prior under entropy loss. Journal of Statistical Planning and Inference 41 , 37-60. · Zbl 0820.62006 · doi:10.1016/0378-3758(94)90153-8
[14] Clarke, B. and Yuan A. (2004). Partial information reference priors: derivation and interpretations. Journal of Statistical Planning and Inference 123 , 313-345. · Zbl 1053.62010 · doi:10.1016/S0378-3758(03)00157-5
[15] Consonni, G., Veronese, P. and Gutiérrez-Peña E. (2004). Reference priors for exponential families with simple quadratic variance function. J. Multivariate Analysis 88 , 335-364. · Zbl 1032.62021 · doi:10.1016/S0047-259X(03)00095-2
[16] Crowder, M. and Sweeting, T. (1989). Bayesian inference for a bivariate binomial distribution. Biometrika 76 , 599-603. · Zbl 0674.62021 · doi:10.1093/biomet/76.3.599
[17] Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference. Biometrika 82 , 37-45. · Zbl 0823.62004 · doi:10.2307/2337625
[18] Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant parameter in group models. Test 4 , 95-114. · Zbl 0851.62002 · doi:10.1007/BF02563105
[19] Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics 24 , 141-159. · Zbl 0906.62024 · doi:10.1214/aos/1033066203
[20] Datta, G. S., Mukerjee, R., Ghosh, M. and Sweeting, T. J. (2000). Bayesian prediction with approximate frequentist validity. The Annals of Statistics 28 , 1414-1426. · Zbl 1105.62312 · doi:10.1214/aos/1015957400
[21] De Santis, F., Mortea, J. and Nardi, A. (2001). Jeffreys priors for survival models with censored data. Journal of Statistical Planning and Inference 99 , 193-209. · Zbl 0989.62016 · doi:10.1016/S0378-3758(01)00080-5
[22] De Santis, F. (2006). Power priors and their use in clinical trials. The American Statistician 60 , 122-129. · doi:10.1198/000313006X109269
[23] Enis, P. and Geisser, S. (1971). Estimation of the probability that \(Y<X\). Journal of the American Statistical Association 66 , 162-168. · Zbl 0236.62009 · doi:10.2307/2284867
[24] Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. New York: Springer · Zbl 1029.62004
[25] Ghosh, M., Mergel, V., and Liu, R. (2011). A general divergence criterion for prior selection. Annals of the Institute of Statistical Mathematics 60 , 43-58. · Zbl 1432.62054 · doi:10.1007/s10463-009-0226-4
[26] Ghosh, M. (2011). Objective priors: An introduction for frequentists. Statistical Science 26 , 187-202. · Zbl 1246.62045 · doi:10.1214/10-STS338
[27] Ghosh, M. and Sun, D. (1998). Recent developments of Bayesian inference for stress-strength models. Frontiers in Reliability . Indian Association for Productivity Quality and Reliability (IAPQR), 143-158. · Zbl 0936.62112
[28] Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41 , 337-348. · Zbl 0825.62407 · doi:10.2307/2347565
[29] Hartigan, J. A. (1964). Invariant prior distributions. Annals of Mathematical Statistics 35 , 836-845. · Zbl 0151.23003 · doi:10.1214/aoms/1177703583
[30] Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society, Series A 186 , 453-461. · Zbl 0063.03050 · doi:10.1098/rspa.1946.0056
[31] Jeffreys, H. (1961). Theory of Probability (3rd edition). Oxford: Oxford University Press. · Zbl 0116.34904
[32] Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association 91 , 1343-1370. · Zbl 0884.62007 · doi:10.2307/2291752
[33] Kullback, S. and R. A. Leibler, R.A. (1951). On information and suffiency. Annals of Mathematical Statistics 22 , 79-86. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[34] Laplace, P. S. (1812). Théorie Analytique des Probabilités . Paris: Courcier. Reprinted as Oeuvres Complètes de Laplace 7 , 1878-1912. Paris: Gauthier-Villars.
[35] Liseo, B. (1993). Elimination of nuisance parameters with reference priors. Biometrika 80 , 295-304. · Zbl 0778.62025 · doi:10.1093/biomet/80.2.295
[36] Liseo, B, and Loperfido, N, (2006). A note on reference priors for the scalar skew-normal distribution. Journal of Statistical Planning and Inference 136 , 373-389. · Zbl 1077.62017 · doi:10.1016/j.jspi.2004.06.062
[37] Polson, N. and Wasserman, L. (1990). Prior distributions for the bivariate binomial. Biometrika 77 , 901-904. · doi:10.1093/biomet/77.4.901
[38] Sivaganesan, S. (1994). Discussion to “An Overview of Bayesian Robustness” by J. Berger. Test 3 , 116-120.
[39] Sivaganesan, S., Laud, P., Mueller, P. (2011). A Bayesian subgroup analysis using zero-inflated Polya-urn scheme. Sociological Methodology 30 , 312-323. · doi:10.1002/sim.4108
[40] Stein, C. (1959). An example of wide discrepancy between fiducial and confidence intervals. Annals of mathematical Statistics 30 , 877-880. · Zbl 0093.15703 · doi:10.1214/aoms/1177706072
[41] Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Annals of the Institute of Statistical Mathematics 16 , 155-160. · Zbl 0144.41405 · doi:10.1007/BF02868569
[42] Stone, M. and Dawid, A. P. (1972). Un-Bayesian implications of improper Bayesian inference in routine statistical problems. Biometrika 59 , 269-375. · Zbl 0239.62004 · doi:10.1093/biomet/59.2.369
[43] Sun, D. (1994). Integrable expansions for posterior distributions for a two-parameter exponential family. The Annals of Statistics 22 , 1808-1830. · Zbl 0828.62071 · doi:10.1214/aos/1176325758
[44] Sun, D. and Ye, K. (1996). Frequentist validity of posterior quantiles for a two-parameter exponential family. Biometrika 83 , 55-65. · Zbl 1059.62530 · doi:10.1093/biomet/83.1.55
[45] Sun, D. and Berger, J. O. (1998). Reference priors under partial information. Biometrika 85 , 55-71. · Zbl 1067.62521 · doi:10.1093/biomet/85.1.55
[46] Sun, D. and Berger, J. O. (2007). Objective Bayesian analysis for the multivariate normal model. Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) Oxford: University Press, 525-562 (with discussion). · Zbl 1252.62030
[47] Walker, S. G. and Gutiérrez-Peña, E. (2011). A decision-theoretical view of default priors Theory and Decision 70 , 1-11. · Zbl 1203.62008 · doi:10.1007/s11238-009-9174-y
[48] Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics 22 , 1195-2111. · Zbl 0819.62013 · doi:10.1214/aos/1176325625
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.