×

Problems involving the fractional \(g\)-Laplacian with lack of compactness. (English) Zbl 1511.46022

Summary: In this paper, we prove compact embedding of a subspace of the fractional Orlicz-Sobolev space \(W^{s, G}\left(\mathbb{R}^N\right)\) consisting of radial functions; our target embedding spaces are of Orlicz type. In addition, we prove a Lions and Lieb type results for \(W^{s, G}\left(\mathbb{R}^N\right)\) that works together in a particular way to get a sequence whose weak limit is non-trivial. As an application, we study the existence of solutions to quasilinear elliptic problems in the whole space \(\mathbb{R}^N\) involving the fractional \(g\)-Laplacian operator, where the conjugated function \(\widetilde{G}\) of \(G\) does not satisfy the \(\Delta_2\)-condition.
©2023 American Institute of Physics

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals

References:

[1] Molica Bisci, G.; Pucci, P., Nonlinear Problems with Lack of Compactness (2021) · Zbl 1472.35005
[2] Fernánez Bonder, J.; Salort, A. M., Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277, 2, 333-367 (2019) · Zbl 1426.46018 · doi:10.1016/j.jfa.2019.04.003
[3] Strauss, W. A., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/bf01626517
[4] Alves, C. O.; Figueiredo, G. M.; Santos, J. A., Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44, 435-456 (2014) · Zbl 1365.35038 · doi:10.12775/TMNA.2014.055
[5] Alves, C. O.; Molica Bisci, G., A compact embedding result for anisotropic Sobolev spaces associated to a strip-like domain and some applications, J. Math. Anal. Appl., 501, 123490 (2019) · Zbl 1472.35156 · doi:10.1016/j.jmaa.2019.123490
[6] Bahrouni, S.; Ounaies, H., Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem, Mediterr. J. Math, 18, 2, 22-46 (2021) · Zbl 1459.35147 · doi:10.1007/s00009-020-01661-w
[7] Fan, X.; Zhao, Y.; Zhao, D., Compact embedding theorems with symmetry of Strauss-Lions type for the space W^1,p(x)(Ω), J. Math. Anal. Appl., 255, 333-348 (2001) · Zbl 0988.46025 · doi:10.1006/jmaa.2000.7266
[8] Lions, P.-L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 315-334 (1982) · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[9] de Morais Filho, D. C.; S Souto, M. A.; do O, J. M., A compactness embedding lemma, a principle of symmetric criticality and applications to elliptic problems, Proyecciones, 19, 1-17 (2000) · doi:10.4067/s0716-09172000000100001
[10] De Nápoli, P. L.; Drelichman, I., Elementary proofs of embedding theorems for potential spaces of radial functions. Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., 115-138 (2016) · Zbl 1356.46027 · doi:10.1007/978-3-319-27466-9_8
[11] Yuan, W.; Sickel, W.; Yang, D., The radial lemma of Strauss in the context of Morrey spaces, Ann. Acad. Sci. Fenn. Math., 39, 417-422 (2014) · Zbl 1302.46025 · doi:10.5186/aasfm.2014.3918
[12] Silva, E. D.; Carvalho, M. L.; de Albuquerque, J. C.; Bahrouni, S., Compact embedding theorems and a Lions’ type Lemma for fractional Orlicz-Sobolev spaces, J. Differ. Equ., 300, 487-512 (2021) · Zbl 1472.35442 · doi:10.1016/j.jde.2021.08.002
[13] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[14] Palais, R. S., The principle of symmetric criticality, Commun. Math. Phys., 69, 19-30 (1979) · Zbl 0417.58007 · doi:10.1007/bf01941322
[15] Alves, C. O.; Carvalho, M. L., A Lions type result for a large class of Orlicz-Sobolev space and applications (2020)
[16] Pick, L.; Kufner, A.; John, O.; Fucík, S., Function Spaces (2013), de Gruyter: de Gruyter, Berlin/Boston · Zbl 1275.46002
[17] Bahrouni, S.; Ounaies, H., Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems, Discrete Contin. Dyn. Syst., 40, 5, 2917-2944 (2020) · Zbl 1436.35090 · doi:10.3934/dcds.2020155
[18] Fukagai, N.; Ito, M.; Narukawa, K., Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \(\mathbb{R}^N\), Funkcial. Ekvac, 49, 235-267 (2006) · Zbl 1387.35405 · doi:10.1619/fesi.49.235
[19] Bahrouni, S.; Ounaies, H.; Tavares, L. S., Basic results of fractional Orlicz-Sobolev space and applications to non-local problems, Topol. Methods Nonlinear Anal., 55, 2, 681-695 (2020) · Zbl 1448.35242 · doi:10.12775/tmna.2019.111
[20] Salort, A. M., Eigenvalues and minimizers for a non-standard growth non-local operator, J. Differ. Equ., 268, 9, 5413-5439 (2020) · Zbl 1432.35231 · doi:10.1016/j.jde.2019.11.027
[21] Szulkin, A., Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincare, 3, 77-109 (1986) · Zbl 0612.58011 · doi:10.1016/s0294-1449(16)30389-4
[22] Alves, C. O.; de Morais Filh, D. C., Existence and concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69, 144 (2018) · Zbl 1411.35090 · doi:10.1007/s00033-018-1038-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.