×

Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. (English) Zbl 1436.35090

The authors show some embedding results for a new class of Banach spaces. They also show multiplicity of solutions for a problem that involves the fractional \(p\)-Laplace operator.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35R11 Fractional partial differential equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] C. O. Alves; G. M. Figueiredo; J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44, 435-456 (2014) · Zbl 1365.35038 · doi:10.12775/TMNA.2014.055
[2] C. O. Alves; G. M. Figueiredo; J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44, 435-456 (2014) · Zbl 1346.35206 · doi:10.12775/TMNA.2014.055
[3] V. Ambrosio, Multiple solutions for a fractional \(p\)-Laplacian equation with sign-changing potential, Electron. J. Differential Equations, 2016 (2016), 12 pp. · Zbl 1284.35171 · doi:10.1016/j.jde.2013.06.016
[4] G. Autuori; P. Pucci, Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^d \)., J. Differ. Equ., 255, 2340-2362 (2013) · Zbl 1464.35123 · doi:10.1016/j.jde.2013.06.016
[5] E. Azroul, A. Benkirane and M. Srati, Introduction to fractional Orlicz-Sobolev spaces, arXiv: 1807.11753. · Zbl 1326.35329 · doi:10.1017/S0308210513001169
[6] A. Bahrouni; H. Ounaies; V. D. Rǎdulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145, 445-465 (2015) · Zbl 1359.35208 · doi:10.1017/S0308210513001169
[7] A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16, 243-252 (2017) · Zbl 1430.35084 · doi:10.3934/cpaa.2017011
[8] A. Bahrouni, S. Bahrouni and M. Q. Xiang, On a class of nonvariational problems in fractional Orlicz-Sobolev spaces, Nonlinear Analysis, 190 (2020), 111595, 13 pp. · Zbl 1448.35242
[9] S. Bahrouni, H. Ounaies and L. S. Tavares, Basic results of fractional Orlicz-Sobolev space and applications to non-local problems, Topol. Methods Nonlinear Anal., accepted for publication. · Zbl 0837.35043 · doi:10.1080/03605309508821149
[10] T. Bartsch; Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in \(\mathbb{R}^d \), Comm. Partial Differ. Equ., 20, 1725-1741 (1995) · Zbl 1330.35495 · doi:10.1080/03605309508821149
[11] G. M. Bisci; V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equatioans, 54, 2985-3008 (2015) · Zbl 1211.35110 · doi:10.1007/s00526-015-0891-5
[12] G. Bonanno; G. Molica Bisci; V. Rǎdulescu, Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces, C. R. Math. Acad. Sci. Paris, 349, 263-268 (2011) · Zbl 1426.46018 · doi:10.1016/j.crma.2011.02.009
[13] J. Fernández Bonder; A. M. Salort, Fractional order Orlicz-Sobolev spaces, Journal of Functional Analysis, 277, 333-367 (2019) · Zbl 1490.35517 · doi:10.1016/j.jfa.2019.04.003
[14] J. F. Bonder, M. P. LLanos and A. M. Salort, A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians, arXiv: 1807.01669. · Zbl 1426.46018
[15] J. F. Bonder and A. M. Salort, Magnetic Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367, arXiv: 1812.05998. · Zbl 1282.81072
[16] X. J. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 54 (2013), 061504, 10 pp. · Zbl 0959.35057 · doi:10.1007/s005260050002
[17] Ph. Clément; M. García-Huidobro; R. Manásevich; K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11, 33-62 (2000) · Zbl 1167.35352 · doi:10.1007/s005260050002
[18] Ph. Clément; B. de Pagter; G. Sweers; F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, 241-267 (2004) · Zbl 1167.35352 · doi:10.1007/s00009-004-0014-6
[19] S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of \(\mathbb{R}^n\), Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[20] E. Di Nezza; G. Palatucci; E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1387.35405 · doi:10.1016/j.bulsci.2011.12.004
[21] N. Fukagai; M. Ito; K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \(\mathbb{R}^d \), Funkcialaj Ekvacioj, 49, 235-267 (2006) · Zbl 0936.35067 · doi:10.1619/fesi.49.235
[22] M. García-Huidobro; V. K. Le; R. Manásevich; K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differ. Equat. Appl., 6, 207-225 (1999) · Zbl 0970.35033 · doi:10.1007/s000300050073
[23] F. Gazzola; V. Rǎdulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in \(\mathbb{R}^d \), Differ. Integral Equ., 13, 47-60 (2000) · Zbl 0239.35045 · doi:10.1090/S0002-9947-1974-0342854-2
[24] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 190, 163-205 (1974) · Zbl 0239.35045 · doi:10.1090/S0002-9947-1974-0342854-2
[25] M. A. Krasnosels’kiǐ and J. B. Rutic’kii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Groningen, 1961. · Zbl 0364.46022
[26] A. Kufner, O. John and S. Fučik, Function Spaces, Noordhoff International Publishing, Leyden, Academia, Prague, 1977. · Zbl 0085.09702 · doi:10.2140/pjm.1958.8.459
[27] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8, 459-466 (1958) · Zbl 1143.35060 · doi:10.2140/pjm.1958.8.459
[28] M. Mihǎilescu; V. Rǎdulescu, Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris., 346, 401-406 (2008) · Zbl 1176.35071 · doi:10.1016/j.crma.2008.02.020
[29] M. Mihǎilescu; V. Rǎdulescu, Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330, 416-432 (2007) · Zbl 1186.35065 · doi:10.1016/j.jmaa.2006.07.082
[30] M. Mihǎilescu; V. Rǎdulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, 58, 2087-2111 (2008) · Zbl 1472.46028 · doi:10.5802/aif.2407
[31] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[32] P. de. Nápoli, J. F. Bonder and A. M. Salort, A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces, arXiv: 1903.03190.
[33] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[34] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991. · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[35] A. M. Salort, Eigenvalues and minimizers for a non-standard growth non-local operator, Journal of Differential Equations, (2019). · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[36] R. Servadei; E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898 (2012) · Zbl 0356.35028 · doi:10.1016/j.jmaa.2011.12.032
[37] R. Servadei; E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Sys., 33, 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[38] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0856.49001 · doi:10.1007/BF01626517
[39] C. Torres, On superlinear fractional \(p\)-Laplacian in \(\mathbb{R}^d \), (2014), arXiv: 1412.3392. · Zbl 1236.35024 · doi:10.1016/j.jmaa.2011.12.003
[40] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 1210.35045 · doi:10.1016/j.jmaa.2010.11.059
[41] Q. Y. Zhang; Q. Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389, 511-518 (2012) · Zbl 0976.35026 · doi:10.1016/j.jmaa.2011.12.003
[42] Q. Y. Zhang; B. Xu, Multiplicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential, J. Math. Anal. Appl., 377, 834-840 (2011) · Zbl 1210.35045 · doi:10.1016/j.jmaa.2010.11.059
[43] W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104, 343-358 (2001) · Zbl 0976.35026 · doi:10.1007/s002290170032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.