×

\(p\)-harmonic functions by way of intrinsic mean value properties. (English) Zbl 1511.35193

Authors’ abstract: Let \(\Omega\) be a bounded domain in \(\mathbb{R}^n\). Under appropriate conditions on \(\Omega\), we prove existence and uniqueness of continuous functions solving the Dirichlet problem associated to certain nonlinear mean value properties in \(\Omega\) with respect to balls of variable radius. We also show that, when properly normalized, such functions converge to the \(p\)-harmonic solution of the Dirichlet problem in \(\Omega\) for \(p\geq 2\). Existence is obtained via iteration, a fundamental tool being the construction of explicit universal barriers in \(\Omega\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Á. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian, Commun. Pure Appl. Anal. 16 (2017), no. 3, 915-944. · Zbl 1359.35062
[2] Á. Arroyo and J. G. Llorente, On the asymptotic mean value property for planar p-harmonic functions, Proc. Amer. Math. Soc. 144 (2016), no. 9, 3859-3868. · Zbl 1345.31006
[3] Á. Arroyo and J. G. Llorente, On the Dirichlet problem for solutions of a restricted nonlinear mean value property, Differential Integral Equations 29 (2016), no. 1-2, 151-166. · Zbl 1349.31003
[4] Á. Arroyo and J. G. Llorente, A priori Hölder and Lipschitz regularity for generalized p-harmonious functions in metric measure spaces, Nonlinear Anal. 168 (2018), 32-49. · Zbl 1387.31009
[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), no. 3, 271-283. · Zbl 0729.65077
[6] C. Caratheodory, On Dirichlet’s Problem, Amer. J. Math. 59 (1937), no. 4, 709-731. · Zbl 0017.26003
[7] D. DeBlassie and R. G. Smits, The p-harmonic measure of a small spherical cap, Matematiche (Catania) 71 (2016), no. 1, 149-171. · Zbl 1371.35133
[8] F. del Teso, J. J. Manfredi and M. Parviainen, Convergence of dynamic programming principles for the p-Laplacian, Adv. Calc. Var. (2020), 10.1515/acv-2019-0043. · Zbl 1486.35235 · doi:10.1515/acv-2019-0043
[9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. · Zbl 1231.35002
[10] W. K. Hayman and P. B. Kennedy, Subharmonic Functions. Vol. I, London Math. Soc. Monogr. 9, Academic Press, London, 1976. · Zbl 0419.31001
[11] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, 2006. · Zbl 1115.31001
[12] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), no. 3, 699-717. · Zbl 0997.35022
[13] O. D. Kellogg, Converses of Gauss’s theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), no. 2, 227-242. · Zbl 0009.11205
[14] E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29 (1998), no. 1, 279-292. · Zbl 0915.46002
[15] H. Lebesgue, Sur le problème de Dirichlet, Comptes Rendus (Paris) 154 (1912), 335-337. · JFM 43.0368.02
[16] P. Lindqvist, Notes on the Stationary p-Laplace Equation, Springer Briefs Math., Springer, Cham, 2019. · Zbl 1421.35002
[17] P. Lindqvist and J. Manfredi, On the mean value property for the p-Laplace equation in the plane, Proc. Amer. Math. Soc. 144 (2016), no. 1, 143-149. · Zbl 1327.35124
[18] H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential Integral Equations 27 (2014), no. 3-4, 201-216. · Zbl 1324.49029
[19] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881-889. · Zbl 1187.35115
[20] J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215-241. · Zbl 1252.91014
[21] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. · Zbl 1206.91002
[22] Y. Peres and S. Sheffield, Tug-of-war with noise: A game-theoretic view of the p-Laplacian, Duke Math. J. 145 (2008), no. 1, 91-120. · Zbl 1206.35112
[23] V. Volterra, Alcune osservazioni sopra propietà atte ad individuare una funzione, Atti Real. Acad. Lincei Roma 18 (1909), 263-266. · JFM 40.0453.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.