×

Global stability and tumor clearance conditions for a cancer chemotherapy system. (English) Zbl 1510.92104

Summary: In this paper we study the global dynamics of a cancer chemotherapy system presented by L. G. de Pillis et al. [Math. Biosci. 209, No. 1, 292–315 (2007; Zbl 1122.49020)]. This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in \(\mathbb{R}_{+, 0}^4\) where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle’s invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.

MSC:

92C50 Medical applications (general)
92C42 Systems biology, networks

Citations:

Zbl 1122.49020
Full Text: DOI

References:

[1] Ruddon, R. W., Cancer biology (2007), Oxford University Press
[4] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J Math Biol, 37, 3, 235-252 (1998) · Zbl 0902.92012
[5] Arciero, J.; Jackson, T.; Kirschner, D., A mathematical model of tumor-immune evasion and siRNA treatment, Discret Contin Dyn B, 4, 1, 39-58 (2004) · Zbl 1083.37531
[6] Kronik, N.; Kogan, Y.; Elishmereni, M.; Halevi-Tobias, K.; Vuk-Pavlović, S.; Agur, Z., Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS One, 5, 12, e15482 (2010)
[7] Page, K.; Uhr, J., Mathematical models of cancer dormancy, Leuk Lymphoma, 46, 313-327 (2005)
[8] Bunimovich-Mendrazitsky, S.; Shochat, E., Stone l: Mathematical model of BCG immunotherapy in superficial bladder cancer, B Math Biol, 69, 1847-1870 (2007) · Zbl 1298.92035
[9] Joshi, B.; Wang, X.; Banerjee, S.; Tian, H.; Matzavinos, A.; Chaplain, M. A., On immunotherapies and cancer vaccination protocols: a mathematical modelling approach, J Theor Biol, 259, 820-827 (2009) · Zbl 1402.92244
[10] Owen, M.; Sherratt, J., Modelling the macrophage invasion of tumors: effects on growth and composition, Math Med Biol, 15, 165-185 (1998) · Zbl 0909.92022
[11] de Pillis, L. G.; Radunskaya, A., The dynamics of an optimally controlled tumor model: a case study, Math Comput Model, 37, 1221-1244 (2003) · Zbl 1043.92018
[12] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 896-903 (1991)
[13] de Pillis, L.; Gu, W.; Fister, K.; Head, T.; Maples, K.; Murugan, A., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Math Biosci, 209, 292-315 (2007) · Zbl 1122.49020
[14] Krishchenko, A., Localization of invariant compact sets of dynamical systems, Differ Equ, 41, 1669-1676 (2005) · Zbl 1133.34342
[15] Krishchenko, A. P.; Starkov, K. E., Localization of compact invariant sets of the Lorenz system, Phys Lett A, 353, 383-388 (2006) · Zbl 1181.37044
[16] Coria, L. N., Global dynamics of the Hastings-Powell system, Math Probl Eng, 2013 (2013) · Zbl 1296.34136
[17] Starkov, K. E.; Coria, L. N., Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy, Nonlinear Anal Real, 4, 1425-1433 (2012) · Zbl 1317.92043
[18] Starkov, K. E.; Gamboa, D., Localization of compact invariant sets and global stability in analysis of one tumor growth model, Math Method Appl Sci, 37, 2854-2863 (2014) · Zbl 1309.34085
[19] Starkov, K. E.; Krishchenko, A. P., On the global dynamics of one cancer tumour growth model, Commun Nonlinear Sci, 19, 1486-1495 (2014) · Zbl 1457.92149
[20] Starkov, K. E.; Plata-Ante, C., On the global dynamics of the cancer aids-related mathematical model, Kybernetika, 50, 563-579 (2014) · Zbl 1310.34056
[21] Starkov, K. E.; Pogromsky, A. Y., On the global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions, Int J Bifurc Chaos, 23, 02, 1350020 (2013) · Zbl 1270.34137
[22] Starkov, K. E.; Villegas, A., On some dynamical properties of a seven-dimensional cancer model with immunotherapy, Int J Bifurc Chaos, 24, 02, 1450020 (2014) · Zbl 1287.34041
[23] Valle, P. A.; Coria, L. N.; Starkov, K. E., Estudio de la dinámica global para un modelo de evasión-inmune de un tumor cancerígeno, Comput Sist, 18, 773-786 (2014)
[24] Perko, L., Differential equations and dynamical systems (2001), Springer · Zbl 0973.34001
[25] Khalil, H. K., Nonlinear systems, vol. 3 (2002), Prentice Hall: Prentice Hall Upper Saddle River · Zbl 1003.34002
[26] De Leenheer, P.; Aeyels, D., Stability properties of equilibria of classes of cooperative systems, IEEE Trans Autom Control, 46, 1996-2001 (2001) · Zbl 1056.93601
[27] Hirsch, M. W., Systems of differential equations that are competitive or cooperative II: convergence almost everywhere, SIAM J Math Anal, 16, 423-439 (1985) · Zbl 0658.34023
[28] Klement, G.; Baruchel, S.; Rak, J.; Man, S.; Clark, K.; Hicklin, D. J., Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J Clin Investig, 105, 8, R15 (2000)
[29] Loven, D.; Hasnis, E.; Bertolini, F.; Shaked, Y., Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer, Drug Discov Today, 18, 3, 193-201 (2013)
[30] Perry, M. C., The chemotherapy source book (2008), Lippincott Williams and Wilkins
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.